mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-24 00:14:37 +08:00
Add LoraExtractKJ
Improved Lora extraction node - build in diff substraction - lowrank algo for quick extraction - dtype selection
This commit is contained in:
parent
730edb08c1
commit
ab8cac5396
@ -6,6 +6,7 @@ from .nodes.image_nodes import *
|
||||
from .nodes.intrinsic_lora_nodes import *
|
||||
from .nodes.mask_nodes import *
|
||||
from .nodes.model_optimization_nodes import *
|
||||
from .nodes.lora_nodes import *
|
||||
NODE_CONFIG = {
|
||||
#constants
|
||||
"BOOLConstant": {"class": BOOLConstant, "name": "BOOL Constant"},
|
||||
@ -203,6 +204,9 @@ NODE_CONFIG = {
|
||||
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},
|
||||
"AppendInstanceDiffusionTracking": {"class": AppendInstanceDiffusionTracking},
|
||||
"DrawInstanceDiffusionTracking": {"class": DrawInstanceDiffusionTracking},
|
||||
|
||||
#lora
|
||||
"LoraExtractKJ": {"class": LoraExtractKJ, "name": "LoraExtractKJ"},
|
||||
}
|
||||
|
||||
def generate_node_mappings(node_config):
|
||||
|
||||
154
nodes/lora_nodes.py
Normal file
154
nodes/lora_nodes.py
Normal file
@ -0,0 +1,154 @@
|
||||
import torch
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
import folder_paths
|
||||
import os
|
||||
import logging
|
||||
from enum import Enum
|
||||
from tqdm import tqdm
|
||||
|
||||
CLAMP_QUANTILE = 0.99
|
||||
|
||||
def extract_lora(diff, rank, algorithm, lowrank_iters=7):
|
||||
conv2d = (len(diff.shape) == 4)
|
||||
kernel_size = None if not conv2d else diff.size()[2:4]
|
||||
conv2d_3x3 = conv2d and kernel_size != (1, 1)
|
||||
out_dim, in_dim = diff.size()[0:2]
|
||||
rank = min(rank, in_dim, out_dim)
|
||||
|
||||
if conv2d:
|
||||
if conv2d_3x3:
|
||||
diff = diff.flatten(start_dim=1)
|
||||
else:
|
||||
diff = diff.squeeze()
|
||||
|
||||
diff_float = diff.float()
|
||||
|
||||
if algorithm == "svd_lowrank":
|
||||
U, S, V = torch.svd_lowrank(diff_float, q=rank, niter=lowrank_iters)
|
||||
U = U @ torch.diag(S)
|
||||
Vh = V.t()
|
||||
else:
|
||||
U, S, Vh = torch.linalg.svd(diff_float)
|
||||
U = U[:, :rank]
|
||||
S = S[:rank]
|
||||
U = U @ torch.diag(S)
|
||||
Vh = Vh[:rank, :]
|
||||
|
||||
dist = torch.cat([U.flatten(), Vh.flatten()])
|
||||
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
||||
low_val = -hi_val
|
||||
|
||||
U = U.clamp(low_val, hi_val)
|
||||
Vh = Vh.clamp(low_val, hi_val)
|
||||
if conv2d:
|
||||
U = U.reshape(out_dim, rank, 1, 1)
|
||||
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
||||
return (U, Vh)
|
||||
|
||||
class LORAType(Enum):
|
||||
STANDARD = 0
|
||||
FULL_DIFF = 1
|
||||
|
||||
LORA_TYPES = {"standard": LORAType.STANDARD,
|
||||
"full_diff": LORAType.FULL_DIFF}
|
||||
|
||||
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False):
|
||||
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
|
||||
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
|
||||
|
||||
# Get total number of keys to process for progress bar
|
||||
total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))])
|
||||
|
||||
# Create progress bar
|
||||
progress_bar = tqdm(total=total_keys, desc=f"Extracting LoRA ({prefix_lora.strip('.')})")
|
||||
comfy_pbar = comfy.utils.ProgressBar(total_keys)
|
||||
|
||||
for k in sd:
|
||||
if k.endswith(".weight"):
|
||||
weight_diff = sd[k]
|
||||
if weight_diff.ndim == 5:
|
||||
logging.info(f"Skipping 5D tensor for key {k}") #skip patch embed
|
||||
progress_bar.update(1)
|
||||
comfy_pbar.update(1)
|
||||
continue
|
||||
if lora_type == LORAType.STANDARD:
|
||||
if weight_diff.ndim < 2:
|
||||
if bias_diff:
|
||||
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().to(out_dtype).cpu()
|
||||
progress_bar.update(1)
|
||||
comfy_pbar.update(1)
|
||||
continue
|
||||
try:
|
||||
out = extract_lora(weight_diff, rank, algorithm, lowrank_iters)
|
||||
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().to(out_dtype).cpu()
|
||||
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().to(out_dtype).cpu()
|
||||
except:
|
||||
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k))
|
||||
elif lora_type == LORAType.FULL_DIFF:
|
||||
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().to(out_dtype).cpu()
|
||||
|
||||
progress_bar.update(1)
|
||||
comfy_pbar.update(1)
|
||||
|
||||
elif bias_diff and k.endswith(".bias"):
|
||||
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().to(out_dtype).cpu()
|
||||
progress_bar.update(1)
|
||||
comfy_pbar.update(1)
|
||||
progress_bar.close()
|
||||
return output_sd
|
||||
|
||||
class LoraExtractKJ:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{
|
||||
"finetuned_model": ("MODEL",),
|
||||
"original_model": ("MODEL",),
|
||||
"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
|
||||
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}),
|
||||
"lora_type": (tuple(LORA_TYPES.keys()),),
|
||||
"algorithm": (["svd_linalg", "svd_lowrank"], {"default": "svd", "tooltip": "SVD algorithm to use, svd_lowrank is faster but less accurate."}),
|
||||
"lowrank_iters": ("INT", {"default": 7, "min": 1, "max": 100, "step": 1, "tooltip": "The number of subspace iterations for lowrank SVD algorithm."}),
|
||||
"output_dtype": (["fp16", "bf16", "fp32"], {"default": "fp16"}),
|
||||
"bias_diff": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
|
||||
}
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "KJNodes/lora"
|
||||
|
||||
def save(self, finetuned_model, original_model, filename_prefix, rank, lora_type, algorithm, lowrank_iters, output_dtype, bias_diff):
|
||||
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype]
|
||||
m = finetuned_model.clone()
|
||||
kp = original_model.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, - 1.0, 1.0)
|
||||
model_diff = m
|
||||
|
||||
lora_type = LORA_TYPES.get(lora_type)
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||||
|
||||
output_sd = {}
|
||||
if model_diff is not None:
|
||||
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff)
|
||||
|
||||
output_checkpoint = f"{filename}_rank{rank}_{output_dtype}_{counter:05}_.safetensors"
|
||||
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
||||
|
||||
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
|
||||
return {}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LoraExtractKJ": LoraExtractKJ
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"LoraExtractKJ": "LoraExtractKJ"
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user