ComfyUI-KJNodes/nodes/lora_nodes.py
kijai ab8cac5396 Add LoraExtractKJ
Improved Lora extraction node
- build in diff substraction
- lowrank algo for quick extraction
- dtype selection
2025-07-16 14:02:31 +03:00

155 lines
6.2 KiB
Python

import torch
import comfy.model_management
import comfy.utils
import folder_paths
import os
import logging
from enum import Enum
from tqdm import tqdm
CLAMP_QUANTILE = 0.99
def extract_lora(diff, rank, algorithm, lowrank_iters=7):
conv2d = (len(diff.shape) == 4)
kernel_size = None if not conv2d else diff.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
out_dim, in_dim = diff.size()[0:2]
rank = min(rank, in_dim, out_dim)
if conv2d:
if conv2d_3x3:
diff = diff.flatten(start_dim=1)
else:
diff = diff.squeeze()
diff_float = diff.float()
if algorithm == "svd_lowrank":
U, S, V = torch.svd_lowrank(diff_float, q=rank, niter=lowrank_iters)
U = U @ torch.diag(S)
Vh = V.t()
else:
U, S, Vh = torch.linalg.svd(diff_float)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, rank, 1, 1)
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
return (U, Vh)
class LORAType(Enum):
STANDARD = 0
FULL_DIFF = 1
LORA_TYPES = {"standard": LORAType.STANDARD,
"full_diff": LORAType.FULL_DIFF}
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False):
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
# Get total number of keys to process for progress bar
total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))])
# Create progress bar
progress_bar = tqdm(total=total_keys, desc=f"Extracting LoRA ({prefix_lora.strip('.')})")
comfy_pbar = comfy.utils.ProgressBar(total_keys)
for k in sd:
if k.endswith(".weight"):
weight_diff = sd[k]
if weight_diff.ndim == 5:
logging.info(f"Skipping 5D tensor for key {k}") #skip patch embed
progress_bar.update(1)
comfy_pbar.update(1)
continue
if lora_type == LORAType.STANDARD:
if weight_diff.ndim < 2:
if bias_diff:
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().to(out_dtype).cpu()
progress_bar.update(1)
comfy_pbar.update(1)
continue
try:
out = extract_lora(weight_diff, rank, algorithm, lowrank_iters)
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().to(out_dtype).cpu()
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().to(out_dtype).cpu()
except:
logging.warning("Could not generate lora weights for key {}, is the weight difference a zero?".format(k))
elif lora_type == LORAType.FULL_DIFF:
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().to(out_dtype).cpu()
progress_bar.update(1)
comfy_pbar.update(1)
elif bias_diff and k.endswith(".bias"):
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().to(out_dtype).cpu()
progress_bar.update(1)
comfy_pbar.update(1)
progress_bar.close()
return output_sd
class LoraExtractKJ:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"finetuned_model": ("MODEL",),
"original_model": ("MODEL",),
"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}),
"lora_type": (tuple(LORA_TYPES.keys()),),
"algorithm": (["svd_linalg", "svd_lowrank"], {"default": "svd", "tooltip": "SVD algorithm to use, svd_lowrank is faster but less accurate."}),
"lowrank_iters": ("INT", {"default": 7, "min": 1, "max": 100, "step": 1, "tooltip": "The number of subspace iterations for lowrank SVD algorithm."}),
"output_dtype": (["fp16", "bf16", "fp32"], {"default": "fp16"}),
"bias_diff": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "KJNodes/lora"
def save(self, finetuned_model, original_model, filename_prefix, rank, lora_type, algorithm, lowrank_iters, output_dtype, bias_diff):
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype]
m = finetuned_model.clone()
kp = original_model.get_key_patches("diffusion_model.")
for k in kp:
m.add_patches({k: kp[k]}, - 1.0, 1.0)
model_diff = m
lora_type = LORA_TYPES.get(lora_type)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
output_sd = {}
if model_diff is not None:
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff)
output_checkpoint = f"{filename}_rank{rank}_{output_dtype}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
return {}
NODE_CLASS_MAPPINGS = {
"LoraExtractKJ": LoraExtractKJ
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoraExtractKJ": "LoraExtractKJ"
}