TeaCache/README.md
2024-12-19 13:03:56 +08:00

139 lines
5.5 KiB
Markdown

# Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model
<div class="is-size-5 publication-authors", align="center",>
<span class="author-block">
<a href="https://liewfeng.github.io" target="_blank">Feng Liu</a><sup>1</sup><sup>*</sup>,&nbsp;
</span>
<span class="author-block">
<a href="https://scholar.google.com.hk/citations?user=ZO3OQ-8AAAAJ" target="_blank">Shiwei Zhang</a><sup>2</sup>,&nbsp;
</span>
<span class="author-block">
<a href="https://jeffwang987.github.io" target="_blank">Xiaofeng Wang</a><sup>1,3</sup>,&nbsp;
</span>
<span class="author-block">
<a href="https://weilllllls.github.io" target="_blank">Yujie Wei</a><sup>4</sup>,&nbsp;
</span>
<span class="author-block">
<a href="http://haonanqiu.com" target="_blank">Haonan Qiu</a><sup>5</sup>
</span>
<br>
<span class="author-block">
<a href="https://callsys.github.io/zhaoyuzhong.github.io-main" target="_blank">Yuzhong Zhao</a><sup>1</sup>,&nbsp;
</span>
<span class="author-block">
<a href="https://scholar.google.com.sg/citations?user=16RDSEUAAAAJ" target="_blank">Yingya Zhang</a><sup>2</sup>,&nbsp;
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=tjEfgsEAAAAJ&hl=en&oi=ao" target="_blank">Qixiang Ye</a><sup>1</sup>,&nbsp;
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=0IKavloAAAAJ&hl=en&oi=ao" target="_blank">Fang Wan</a><sup>1</sup><sup></sup>
</span>
</div>
<div class="is-size-5 publication-authors", align="center">
<span class="author-block"><sup>1</sup>University of Chinese Academy of Sciences,&nbsp;</span>
<span class="author-block"><sup>2</sup>Alibaba Group</span>
<br>
<span class="author-block"><sup>3</sup>Institute of Automation, Chinese Academy of Sciences</span>
<br>
<span class="author-block"><sup>4</sup>Fudan University,&nbsp;</span>
<span class="author-block"><sup>5</sup>Nanyang Technological University</span>
</div>
<div class="is-size-5 publication-authors", align="center">
(* Work was done during internship at Alibaba Group. † Corresponding author.)
</div>
<div class="is-size-5 publication-authors", align="center">
<a href="https://arxiv.org/abs/2411.19108">Paper</a> |
<a href="https://liewfeng.github.io/TeaCache/">Project Page</a>
</div>
![visualization](./assets/tisser.png)
## Latest News 🔥
- [2024/12/19] 🔥 Support [CogVideoX](https://github.com/THUDM/CogVideo).
- [2024/12/06] 🎉 Release the [code](https://github.com/LiewFeng/TeaCache) TeaCache. Support [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan) and [Latte](https://github.com/Vchitect/Latte).
- [2024/11/28] 🎉 Release the [paper](https://arxiv.org/abs/2411.19108) of TeaCache.
## Introduction
We introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching approach that estimates and leverages the fluctuating differences among model outputs across timesteps. For more details and visual results, please visit our [project page](https://github.com/LiewFeng/TeaCache).
## Installation
Prerequisites:
- Python >= 3.10
- PyTorch >= 1.13 (We recommend to use a >2.0 version)
- CUDA >= 11.6
We strongly recommend using Anaconda to create a new environment (Python >= 3.10) to run our examples:
```shell
conda create -n teacache python=3.10 -y
conda activate teacache
```
Install VideoSys:
```shell
git clone https://github.com/LiewFeng/TeaCache
cd TeaCache
pip install -e .
```
## Evaluation of TeaCache
We first generate videos according to VBench's prompts.
And then calculate Vbench, PSNR, LPIPS and SSIM based on the video generated.
1. Generate video
```
cd eval/teacache
python experiments/latte.py
python experiments/opensora.py
python experiments/open_sora_plan.py
python experiments/cogvideox.py
```
2. Calculate Vbench score
```
# vbench is calculated independently
# get scores for all metrics
python vbench/run_vbench.py --video_path aaa --save_path bbb
# calculate final score
python vbench/cal_vbench.py --score_dir bbb
```
3. Calculate other metrics
```
# these metrics are calculated compared with original model
# gt video is the video of original model
# generated video is our methods's results
python common_metrics/eval.py --gt_video_dir aa --generated_video_dir bb
```
## Citation
If you find TeaCache is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.
```
@article{liu2024timestep,
title={Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model},
author={Liu, Feng and Zhang, Shiwei and Wang, Xiaofeng and Wei, Yujie and Qiu, Haonan and Zhao, Yuzhong and Zhang, Yingya and Ye, Qixiang and Wan, Fang},
journal={arXiv preprint arXiv:2411.19108},
year={2024}
}
```
## Acknowledgement
This repository is built based on [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys), [Open-Sora](https://github.com/hpcaitech/Open-Sora), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [Latte](https://github.com/Vchitect/Latte) and [CogVideoX](https://github.com/THUDM/CogVideo). Thanks for their contributions!