mirror of
https://git.datalinker.icu/ali-vilab/TeaCache
synced 2025-12-09 04:44:23 +08:00
1.9 KiB
1.9 KiB
TeaCache4HunyuanVideo
TeaCache can speedup HunyuanVideo 2x without much visual quality degradation, in a training-free manner.
📈 Inference Latency Comparisons on a Single A800 GPU
| Resolution | HunyuanVideo | TeaCache (0.1) | TeaCache (0.15) |
|---|---|---|---|
| 540p | ~18 min | ~11 min | ~8 min |
| 720p | ~50 min | ~30 min | ~23 min |
Usage
Follow HunyuanVideo to clone the repo and finish the installation, then copy 'teacache_sample_video.py' in this repo to the HunyuanVideo repo. You can modify the thresh in line 220 to obtain your desired trade-off between latency and visul quality.
For single-gpu inference, you can use the following command:
cd HunyuanVideo
python3 teacache_sample_video.py \
--video-size 720 1280 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--use-cpu-offload \
--save-path ./teacache_results
To generate a video with 8 GPUs, you can use the following command:
cd HunyuanVideo
torchrun --nproc_per_node=8 teacache_sample_video.py \
--video-size 1280 720 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--seed 42 \
--ulysses-degree 8 \
--ring-degree 1 \
--save-path ./teacache_results
Acknowledgements
We would like to thank the contributors to the HunyuanVideo.