2024-12-24 20:56:48 +08:00

55 lines
1.9 KiB
Markdown

<!-- ## **TeaCache4HunyuanVideo** -->
# TeaCache4HunyuanVideo
[TeaCache](https://github.com/LiewFeng/TeaCache) can speedup [HunyuanVideo](https://github.com/Tencent/HunyuanVideo) 2x without much visual quality degradation, in a training-free manner.
## 📈 Inference Latency Comparisons on a Single A800 GPU
| Resolution | HunyuanVideo | TeaCache (0.1) | TeaCache (0.15) |
|:---------------------:|:-------------------------:|:--------------------:|:----------------------:|
| 540p | ~18 min | ~11 min | ~8 min |
| 720p | ~50 min | ~30 min | ~23 min |
## Usage
Follow [HunyuanVideo](https://github.com/Tencent/HunyuanVideo) to clone the repo and finish the installation, then copy 'teacache_sample_video.py' in this repo to the HunyuanVideo repo.
For single-gpu inference, you can use the following command:
```bash
cd HunyuanVideo
python3 teacache_sample_video.py \
--video-size 720 1280 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--use-cpu-offload \
--save-path ./teacache_results
```
To generate a video with 8 GPUs, you can use the following command:
```bash
cd HunyuanVideo
torchrun --nproc_per_node=8 teacache_sample_video.py \
--video-size 1280 720 \
--video-length 129 \
--infer-steps 50 \
--prompt "A cat walks on the grass, realistic style." \
--flow-reverse \
--seed 42 \
--ulysses-degree 8 \
--ring-degree 1 \
--save-path ./teacache_results
```
You can modify the thresh in line 220 to obtain your desired trade-off between latency and visul quality.
## Acknowledgements
We would like to thank the contributors to the [HunyuanVideo](https://github.com/Tencent/HunyuanVideo).