mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-25 14:24:36 +08:00
Set torch default dtype in a context manager (#971)
Signed-off-by: Antoni Baum <antoni.baum@protonmail.com>
This commit is contained in:
parent
320a622ec4
commit
005ba458b5
@ -1,4 +1,5 @@
|
||||
"""Utilities for selecting and loading models."""
|
||||
import contextlib
|
||||
from typing import Type
|
||||
|
||||
import torch
|
||||
@ -30,6 +31,15 @@ _MODEL_REGISTRY = {
|
||||
}
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def _set_default_torch_dtype(dtype: torch.dtype):
|
||||
"""Sets the default torch dtype to the given dtype."""
|
||||
old_dtype = torch.get_default_dtype()
|
||||
torch.set_default_dtype(dtype)
|
||||
yield
|
||||
torch.set_default_dtype(old_dtype)
|
||||
|
||||
|
||||
def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
|
||||
architectures = getattr(config, "architectures", [])
|
||||
for arch in architectures:
|
||||
@ -42,19 +52,18 @@ def _get_model_architecture(config: PretrainedConfig) -> Type[nn.Module]:
|
||||
|
||||
def get_model(model_config: ModelConfig) -> nn.Module:
|
||||
model_class = _get_model_architecture(model_config.hf_config)
|
||||
torch.set_default_dtype(model_config.dtype)
|
||||
|
||||
# Create a model instance.
|
||||
# The weights will be initialized as empty tensors.
|
||||
model = model_class(model_config.hf_config)
|
||||
if model_config.use_dummy_weights:
|
||||
model = model.cuda()
|
||||
# NOTE(woosuk): For accurate performance evaluation, we assign
|
||||
# random values to the weights.
|
||||
initialize_dummy_weights(model)
|
||||
else:
|
||||
# Load the weights from the cached or downloaded files.
|
||||
model.load_weights(model_config.model, model_config.download_dir,
|
||||
model_config.use_np_weights)
|
||||
model = model.cuda()
|
||||
with _set_default_torch_dtype(model_config.dtype):
|
||||
# Create a model instance.
|
||||
# The weights will be initialized as empty tensors.
|
||||
model = model_class(model_config.hf_config)
|
||||
if model_config.use_dummy_weights:
|
||||
model = model.cuda()
|
||||
# NOTE(woosuk): For accurate performance evaluation, we assign
|
||||
# random values to the weights.
|
||||
initialize_dummy_weights(model)
|
||||
else:
|
||||
# Load the weights from the cached or downloaded files.
|
||||
model.load_weights(model_config.model, model_config.download_dir,
|
||||
model_config.use_np_weights)
|
||||
model = model.cuda()
|
||||
return model.eval()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user