[Model] Siglip Embedding Support (#27324)

Signed-off-by: piood <2477084691@qq.com>
This commit is contained in:
Yu Jiaqi 2025-10-24 04:19:48 +08:00 committed by GitHub
parent 51dd14ac2b
commit 0552cfb195
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 897 additions and 113 deletions

View File

@ -800,12 +800,13 @@ These models primarily support the [`LLM.embed`](./pooling_models.md#llmembed) A
The following table lists those that are tested in vLLM.
| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) |
|--------------|--------|--------|-------------------|----------------------|---------------------------|
| `CLIPModel` | CLIP | T / I | `openai/clip-vit-base-patch32`, `openai/clip-vit-large-patch14`, etc. | | |
| `LlavaNextForConditionalGeneration`<sup>C</sup> | LLaVA-NeXT-based | T / I | `royokong/e5-v` | | ✅︎ |
| `Phi3VForCausalLM`<sup>C</sup> | Phi-3-Vision-based | T + I | `TIGER-Lab/VLM2Vec-Full` | | ✅︎ |
| `*ForConditionalGeneration`<sup>C</sup>, `*ForCausalLM`<sup>C</sup>, etc. | Generative models | \* | N/A | \* | \* |
| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/parallelism_scaling.md) | [V1](gh-issue:8779) |
|--------------|--------|--------|-------------------|----------------------|---------------------------|---------------------|
| `CLIPModel` | CLIP | T / I | `openai/clip-vit-base-patch32`, `openai/clip-vit-large-patch14`, etc. | | | ✅︎ |
| `LlavaNextForConditionalGeneration`<sup>C</sup> | LLaVA-NeXT-based | T / I | `royokong/e5-v` | | ✅︎ | ✅︎ |
| `Phi3VForCausalLM`<sup>C</sup> | Phi-3-Vision-based | T + I | `TIGER-Lab/VLM2Vec-Full` | | ✅︎ | ✅︎ |
| `SiglipModel` | SigLIP | T / I | `google/siglip-base-patch16-224` | | | ✅︎ |
| `*ForConditionalGeneration`<sup>C</sup>, `*ForCausalLM`<sup>C</sup>, etc. | Generative models | \* | N/A | \* | \* | \* |
<sup>C</sup> Automatically converted into an embedding model via `--convert embed`. ([details](./pooling_models.md#model-conversion))
\* Feature support is the same as that of the original model.

View File

@ -110,6 +110,53 @@ def run_e5_v(query: Query) -> ModelRequestData:
)
def run_jinavl_reranker(query: Query) -> ModelRequestData:
if query["modality"] != "text+images":
raise ValueError(f"Unsupported query modality: '{query['modality']}'")
engine_args = EngineArgs(
model="jinaai/jina-reranker-m0",
runner="pooling",
max_model_len=32768,
trust_remote_code=True,
mm_processor_kwargs={
"min_pixels": 3136,
"max_pixels": 602112,
},
limit_mm_per_prompt={"image": 1},
)
return ModelRequestData(
engine_args=engine_args,
query=query["text"],
documents=query["image"],
)
def run_siglip(query: Query) -> ModelRequestData:
if query["modality"] == "text":
prompt = query["text"]
image = None
elif query["modality"] == "image":
prompt = "" # For image input, make sure that the prompt text is empty
image = query["image"]
else:
modality = query["modality"]
raise ValueError(f"Unsupported query modality: '{modality}'")
engine_args = EngineArgs(
model="google/siglip-base-patch16-224",
runner="pooling",
limit_mm_per_prompt={"image": 1},
)
return ModelRequestData(
engine_args=engine_args,
prompt=prompt,
image=image,
)
def _get_vlm2vec_prompt_image(query: Query, image_token: str):
if query["modality"] == "text":
text = query["text"]
@ -211,29 +258,6 @@ def run_vlm2vec_qwen2vl(query: Query) -> ModelRequestData:
)
def run_jinavl_reranker(query: Query) -> ModelRequestData:
if query["modality"] != "text+images":
raise ValueError(f"Unsupported query modality: '{query['modality']}'")
engine_args = EngineArgs(
model="jinaai/jina-reranker-m0",
runner="pooling",
max_model_len=32768,
trust_remote_code=True,
mm_processor_kwargs={
"min_pixels": 3136,
"max_pixels": 602112,
},
limit_mm_per_prompt={"image": 1},
)
return ModelRequestData(
engine_args=engine_args,
query=query["text"],
documents=query["image"],
)
def get_query(modality: QueryModality):
if modality == "text":
return TextQuery(modality="text", text="A dog sitting in the grass")
@ -328,9 +352,10 @@ def run_score(model: str, modality: QueryModality, seed: int | None):
model_example_map = {
"clip": run_clip,
"e5_v": run_e5_v,
"jinavl_reranker": run_jinavl_reranker,
"siglip": run_siglip,
"vlm2vec_phi3v": run_vlm2vec_phi3v,
"vlm2vec_qwen2vl": run_vlm2vec_qwen2vl,
"jinavl_reranker": run_jinavl_reranker,
}

View File

@ -83,6 +83,109 @@ def run_clip(client: OpenAI, model: str):
print("Text embedding output:", response.data[0].embedding)
def run_dse_qwen2_vl(client: OpenAI, model: str):
"""
Start the server using:
vllm serve MrLight/dse-qwen2-2b-mrl-v1 \
--runner pooling \
--trust-remote-code \
--max-model-len 8192 \
--chat-template examples/template_dse_qwen2_vl.jinja
"""
response = create_chat_embeddings(
client,
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
{"type": "text", "text": "What is shown in this image?"},
],
}
],
model=model,
encoding_format="float",
)
print("Image embedding output:", response.data[0].embedding)
# MrLight/dse-qwen2-2b-mrl-v1 requires a placeholder image
# of the minimum input size
buffer = io.BytesIO()
image_placeholder = Image.new("RGB", (56, 56))
image_placeholder.save(buffer, "png")
buffer.seek(0)
image_placeholder = base64.b64encode(buffer.read()).decode("utf-8")
response = create_chat_embeddings(
client,
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_placeholder}",
},
},
{"type": "text", "text": "Query: What is the weather like today?"},
],
}
],
model=model,
encoding_format="float",
)
print("Text embedding output:", response.data[0].embedding)
def run_siglip(client: OpenAI, model: str):
"""
Start the server using:
vllm serve google/siglip-base-patch16-224 \
--runner pooling
"""
response = create_chat_embeddings(
client,
messages=[
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
],
}
],
model=model,
encoding_format="float",
)
print("Image embedding output:", response.data[0].embedding)
response = create_chat_embeddings(
client,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "a photo of a cat"},
],
}
],
model=model,
encoding_format="float",
)
print("Text embedding output:", response.data[0].embedding)
def run_vlm2vec(client: OpenAI, model: str):
"""
Start the server using:
@ -148,72 +251,11 @@ def run_vlm2vec(client: OpenAI, model: str):
print("Text embedding output:", response.data[0].embedding)
def run_dse_qwen2_vl(client: OpenAI, model: str):
"""
Start the server using:
vllm serve MrLight/dse-qwen2-2b-mrl-v1 \
--runner pooling \
--trust-remote-code \
--max-model-len 8192 \
--chat-template examples/template_dse_qwen2_vl.jinja
"""
response = create_chat_embeddings(
client,
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
{"type": "text", "text": "What is shown in this image?"},
],
}
],
model=model,
encoding_format="float",
)
print("Image embedding output:", response.data[0].embedding)
# MrLight/dse-qwen2-2b-mrl-v1 requires a placeholder image
# of the minimum input size
buffer = io.BytesIO()
image_placeholder = Image.new("RGB", (56, 56))
image_placeholder.save(buffer, "png")
buffer.seek(0)
image_placeholder = base64.b64encode(buffer.read()).decode("utf-8")
response = create_chat_embeddings(
client,
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_placeholder}",
},
},
{"type": "text", "text": "Query: What is the weather like today?"},
],
}
],
model=model,
encoding_format="float",
)
print("Text embedding output:", response.data[0].embedding)
model_example_map = {
"clip": run_clip,
"vlm2vec": run_vlm2vec,
"dse_qwen2_vl": run_dse_qwen2_vl,
"siglip": run_siglip,
"vlm2vec": run_vlm2vec,
}

View File

@ -0,0 +1,137 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import SiglipModel
from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner
from ...utils import check_embeddings_close
HF_TEXT_PROMPTS = [
"a photo of a stop sign",
"a photo of a cherry blossom",
]
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts(
{
"stop_sign": "",
"cherry_blossom": "",
}
)
MODELS = ["google/siglip-base-patch16-224"]
def _run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
input_texts: list[str],
input_images: PromptImageInput,
model: str,
*,
dtype: str,
) -> None:
with vllm_runner(
model, runner="pooling", dtype=dtype, enforce_eager=True, max_model_len=64
) as vllm_model:
vllm_outputs = vllm_model.embed(input_texts, images=input_images)
with hf_runner(model, dtype=dtype, auto_cls=SiglipModel) as hf_model:
all_inputs = hf_model.get_inputs(input_texts, images=input_images)
all_outputs = []
for inputs in all_inputs:
inputs = hf_model.wrap_device(inputs)
if "pixel_values" in inputs:
pooled_output = hf_model.model.get_image_features(
pixel_values=inputs.pixel_values,
).squeeze(0)
else:
pooled_output = hf_model.model.get_text_features(
input_ids=inputs.input_ids,
).squeeze(0)
all_outputs.append(pooled_output.tolist())
hf_outputs = all_outputs
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
def test_models_text(
hf_runner,
vllm_runner,
image_assets,
model: str,
dtype: str,
) -> None:
input_texts_images = [(text, None) for text in HF_TEXT_PROMPTS]
input_texts = [text for text, _ in input_texts_images]
input_images = [image for _, image in input_texts_images]
_run_test(
hf_runner,
vllm_runner,
input_texts,
input_images, # type: ignore
model,
dtype=dtype,
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
def test_models_image(
hf_runner,
vllm_runner,
image_assets,
model: str,
dtype: str,
) -> None:
input_texts_images = [
(text, asset.pil_image) for text, asset in zip(HF_IMAGE_PROMPTS, image_assets)
]
input_texts = [text for text, _ in input_texts_images]
input_images = [image for _, image in input_texts_images]
_run_test(
hf_runner,
vllm_runner,
input_texts,
input_images,
model,
dtype=dtype,
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
def test_models_text_image_no_crash(
vllm_runner,
image_assets,
model: str,
dtype: str,
) -> None:
texts = [HF_TEXT_PROMPTS[0]]
images = [image_assets[0].pil_image]
with vllm_runner(
model,
runner="pooling",
dtype=dtype,
enforce_eager=True,
max_model_len=64,
) as vllm_model:
with pytest.raises(ValueError, match="not both"):
vllm_model.embed(texts, images=images)
vllm_model.embed(texts)
vllm_model.embed([""], images=images)

View File

@ -471,6 +471,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
"TIGER-Lab/VLM2Vec-Full", trust_remote_code=True
),
"Qwen2VLForConditionalGeneration": _HfExamplesInfo("MrLight/dse-qwen2-2b-mrl-v1"),
"SiglipModel": _HfExamplesInfo("google/siglip-base-patch16-224"),
"PrithviGeoSpatialMAE": _HfExamplesInfo(
"ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL-Sen1Floods11",
dtype="float16",

View File

@ -209,6 +209,7 @@ _EMBEDDING_MODELS = {
),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501
"SiglipModel": ("siglip", "SiglipEmbeddingModel"),
# Technically Terratorch models work on images, both in
# input and output. I am adding it here because it piggy-backs on embedding
# models for the time being.

View File

@ -4,13 +4,23 @@
within a vision language model."""
import math
from collections.abc import Iterable
from collections.abc import Iterable, Mapping
from functools import cached_property
from typing import Annotated, Literal
import torch
from torch import nn
from transformers import SiglipVisionConfig
from transformers import (
BatchFeature,
SiglipConfig,
SiglipProcessor,
SiglipTextConfig,
SiglipVisionConfig,
)
from vllm.attention.layer import MultiHeadAttention
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (
@ -18,20 +28,232 @@ from vllm.model_executor.layers.linear import (
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalInputs,
MultiModalKwargsItems,
MultiModalUUIDDict,
)
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptIndexTargets,
PromptReplacement,
PromptUpdate,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsQuant
from .interfaces_base import default_pooling_type
from .utils import AutoWeightsLoader, maybe_prefix
from .vision import (
VisionEncoderInfo,
VisionFeatureSelectStrategy,
VisionFeatureSelectStrategyStr,
get_num_selected_vision_tokens,
resolve_visual_encoder_outputs,
)
class SiglipImagePixelInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height of each image
- w: Width of each image
"""
type: Literal["pixel_values"]
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
_POOLING_TYPE_TO_STRATEGY: dict[str, VisionFeatureSelectStrategyStr] = {
"MEAN": "full",
"ALL": "full",
"CLS": "class",
}
def _get_vision_feature_select_strategy(
pooling_type: str,
) -> VisionFeatureSelectStrategyStr:
try:
return _POOLING_TYPE_TO_STRATEGY[pooling_type]
except KeyError:
raise ValueError(
f"No feature selection strategy is defined for "
f"pooling_type: {pooling_type!r}"
) from None
class SiglipProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(SiglipConfig)
def get_vision_encoder_info(self):
return SiglipEncoderInfo(self.get_hf_config())
def get_hf_processor(self, **kwargs: object):
return self.ctx.get_hf_processor(SiglipProcessor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": 1}
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
vision_encoder_info = self.get_vision_encoder_info()
pooler_config = self.ctx.model_config.pooler_config
assert pooler_config is not None
return get_num_selected_vision_tokens(
vision_encoder_info.get_num_image_tokens(
image_width=image_width,
image_height=image_height,
),
_get_vision_feature_select_strategy(pooler_config.pooling_type),
)
def get_image_size_with_most_features(self) -> ImageSize:
vision_encoder_info = self.get_vision_encoder_info()
width = height = vision_encoder_info.get_image_size()
return ImageSize(width=width, height=height)
def get_max_image_tokens(self) -> int:
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_image_tokens(
image_width=target_width, image_height=target_height
)
class SiglipDummyInputsBuilder(BaseDummyInputsBuilder[SiglipProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = self.info.get_image_size_with_most_features()
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=target_width,
height=target_height,
num_images=num_images,
overrides=image_overrides,
)
}
class SiglipMultiModalProcessor(BaseMultiModalProcessor[SiglipProcessingInfo]):
@cached_property
def image_token_id(self) -> int:
tokenizer = self.info.get_tokenizer()
dummy_token_id = 0
assert dummy_token_id not in tokenizer.all_special_ids
return dummy_token_id
def apply(
self,
prompt: str | list[int],
mm_data: MultiModalDataDict,
hf_processor_mm_kwargs: Mapping[str, object],
tokenization_kwargs: Mapping[str, object] | None = None,
*,
mm_uuids: MultiModalUUIDDict | None = None,
) -> MultiModalInputs:
if prompt and mm_data:
raise ValueError(
"Siglip accepts text-only or image-only inputs, not both! "
"Image-only inputs means passing an image with an empty text "
"prompt."
)
if mm_data:
# For multi-modal data, the prompt after processing should
# only contain the image token
tokenization_kwargs = {
**(tokenization_kwargs or {}),
"add_special_tokens": False,
}
return super().apply(
prompt=prompt,
mm_data=mm_data,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
tokenization_kwargs=tokenization_kwargs,
mm_uuids=mm_uuids,
)
def _hf_processor_applies_updates(
self,
prompt_text: str,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
tokenization_kwargs: Mapping[str, object],
) -> bool:
return False
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(pixel_values=MultiModalFieldConfig.batched("image"))
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> list[PromptUpdate]:
image_token_id = self.image_token_id
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width, image_height=image_size.height
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=PromptIndexTargets.start(),
replacement=get_replacement,
),
]
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
def get_num_image_tokens(
self,
@ -151,8 +373,9 @@ class SiglipVisionEmbeddings(nn.Module):
class SiglipAttention(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
@ -195,12 +418,29 @@ class SiglipAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
) -> tuple[torch.Tensor, None]:
"""Input shape: Batch x Time x Channel"""
qkv_states, _ = self.qkv_proj(hidden_states)
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
needs_unsqueeze = query_states.ndim == 2
if needs_unsqueeze:
query_states, key_states, value_states = (
query_states.unsqueeze(0),
key_states.unsqueeze(0),
value_states.unsqueeze(0),
)
out = self.attn(query_states, key_states, value_states)
if needs_unsqueeze:
out, query_states, key_states, value_states = (
out.squeeze(0),
query_states.squeeze(0),
key_states.squeeze(0),
value_states.squeeze(0),
)
attn_output, _ = self.out_proj(out)
return attn_output, None
@ -209,7 +449,7 @@ class SiglipAttention(nn.Module):
class SiglipMLP(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
@ -249,8 +489,9 @@ class SiglipMLP(nn.Module):
class SiglipEncoderLayer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
@ -291,9 +532,10 @@ class SiglipEncoderLayer(nn.Module):
class SiglipEncoder(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
num_hidden_layers_override: int | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
@ -335,6 +577,76 @@ class SiglipEncoder(nn.Module):
return hidden_states
class SiglipTextTransformer(nn.Module):
def __init__(
self,
config: SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipTextEmbeddings(config)
self.encoder = SiglipEncoder(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.encoder",
)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.head = nn.Linear(embed_dim, config.projection_size)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embeddings.token_embedding(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
hidden_states = self.embeddings(input_ids, position_ids, inputs_embeds)
last_hidden_state = self.encoder(
inputs_embeds=hidden_states, return_all_hidden_states=False
)
last_hidden_state = self.final_layer_norm(last_hidden_state)
return last_hidden_state
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
@ -357,8 +669,9 @@ class SiglipMultiheadAttentionPoolingHead(nn.Module):
)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
batch_size = hidden_state.size(0)
probe = self.probe.expand(batch_size, -1, -1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
@ -367,7 +680,9 @@ class SiglipMultiheadAttentionPoolingHead(nn.Module):
hidden_state = self.mlp(hidden_state)
hidden_state += residual
return hidden_state[:, 0]
pooled = hidden_state[:, 0]
return pooled.unsqueeze(1)
class SiglipVisionTransformer(nn.Module):
@ -420,6 +735,14 @@ class SiglipVisionTransformer(nn.Module):
prefix=f"{prefix}.head",
)
@property
def dtype(self):
return next(self.parameters()).dtype
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
pixel_values: torch.Tensor,
@ -432,7 +755,6 @@ class SiglipVisionTransformer(nn.Module):
pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# Produces either the last layer output or all of the hidden states,
# depending on if we have select_layers or not
encoder_outputs = self.encoder(
@ -440,21 +762,60 @@ class SiglipVisionTransformer(nn.Module):
return_all_hidden_states=select_layers is not None,
)
# Handle post-norm (if applicable) and stacks feature layers if needed
if self.post_layernorm is not None:
encoder_outputs = self.post_layernorm(encoder_outputs)
if self.use_head:
encoder_outputs = self.head(encoder_outputs)
# stacks feature layers if needed
encoder_outputs = resolve_visual_encoder_outputs(
encoder_outputs,
self.post_layernorm,
None,
select_layers=select_layers,
max_possible_layers=self.config.num_hidden_layers,
feature_select_strategy=feature_select_strategy,
)
# TODO: add this back when pooled_output is used in inference.
# if self.use_head:
# pooled_output = self.head(encoder_outputs)
return encoder_outputs
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
layer_count = len(self.encoder.layers)
for name, loaded_weight in weights:
# post_layernorm is not needed in SiglipVisionTransformer
if name.startswith("post_layernorm") and self.post_layernorm is None:
continue
# omit layers when num_hidden_layers_override is set
if name.startswith("encoder.layers"):
layer_idx = int(name.split(".")[2])
if layer_idx >= layer_count:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class SiglipVisionModel(nn.Module):
config_class = SiglipVisionConfig
@ -484,7 +845,11 @@ class SiglipVisionModel(nn.Module):
@property
def dtype(self):
return self.get_input_embeddings().weight.dtype
return self.vision_model.dtype
@property
def device(self):
return self.vision_model.device
def forward(
self,
@ -555,3 +920,214 @@ class SiglipVisionModel(nn.Module):
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
# Adapted from: https://github.com/huggingface/transformers/blob/v4.54.1/src/transformers/models/siglip/modeling_siglip.py#L200
class SiglipTextEmbeddings(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
self.config = config
self.token_embedding = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.position_embedding = VocabParallelEmbedding(
config.max_position_embeddings, config.hidden_size
)
self.register_buffer(
"position_ids",
torch.arange(config.max_position_embeddings).expand((1, -1)),
persistent=False,
)
def forward(
self,
input_ids: torch.Tensor | None,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
# Assume EOS token corresponds to CLS token in text model
@default_pooling_type("CLS")
@MULTIMODAL_REGISTRY.register_processor(
SiglipMultiModalProcessor,
info=SiglipProcessingInfo,
dummy_inputs=SiglipDummyInputsBuilder,
)
class SiglipEmbeddingModel(nn.Module, SupportsMultiModal, SupportsQuant):
is_pooling_model = True
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
merge_by_field_config = True
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return None
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: SiglipConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
if hasattr(config, "num_labels"):
config.num_labels = 0
text_config = config.text_config
vision_config = config.vision_config
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = SiglipTextTransformer(
text_config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "text_model"),
)
self.vision_model = SiglipVisionTransformer(
vision_config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vision_model"),
)
self.text_projection_size = text_config.projection_size
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler_config = pooler_config
self.pooler = DispatchPooler(
{
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)
self._is_text_input = True
def get_text_features(
self,
input_ids: torch.Tensor | None,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
last_hidden_state = self.text_model(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
)
text_features = self.text_model.head(last_hidden_state)
# Flip to extract CLS token (first token after reversal) for pooling
text_features = text_features.flip(0)
return text_features
def get_image_features(
self,
pixel_values: torch.Tensor,
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
if feature_select_strategy is None:
feature_select_strategy = _get_vision_feature_select_strategy(
self.pooler_config.pooling_type
)
pooled_output = self.vision_model(
pixel_values=pixel_values,
select_layers=None,
feature_select_strategy=feature_select_strategy,
)
return pooled_output
def _parse_and_validate_image_input(
self, **kwargs: object
) -> SiglipImagePixelInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
if pixel_values is None:
return None
expected_h = expected_w = self.config.vision_config.image_size
return SiglipImagePixelInputs(
type="pixel_values",
data=pixel_values,
resolve_bindings={"h": expected_h, "w": expected_w},
)
def _process_image_inputs(self, inputs: SiglipImagePixelInputs) -> torch.Tensor:
pixel_values = inputs["data"]
return self.get_image_features(pixel_values)
def get_language_model(self) -> torch.nn.Module:
return self.text_model
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: MultiModalEmbeddings | None = None,
*,
is_multimodal: torch.Tensor | None = None,
handle_oov_mm_token: bool = False,
) -> torch.Tensor:
self._is_text_input = (
multimodal_embeddings is None or len(multimodal_embeddings) == 0
)
if multimodal_embeddings is None or is_multimodal is None:
return super().get_input_embeddings(input_ids)
return super().get_input_embeddings(
input_ids,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
handle_oov_mm_token=handle_oov_mm_token,
)
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
vision_embeddings = self._process_image_inputs(image_input)
return vision_embeddings
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> torch.Tensor:
if intermediate_tensors is not None:
raise RuntimeError("PP is not supported for this model")
# Multimodal inputs (image embeddings)
if not self._is_text_input:
return inputs_embeds
return self.get_text_features(input_ids, positions, inputs_embeds)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(
self,
skip_substrs=[".position_ids"],
ignore_unexpected_prefixes=["logit_scale.", "logit_bias."],
)
return loader.load_weights(weights)

View File

@ -31,14 +31,15 @@ def _get_minicpmv_chat_template_fallback(tokenizer_name_or_path: str) -> Path |
_MODEL_TYPE_TO_CHAT_TEMPLATE_FALLBACK: dict[str, ChatTemplatePath] = {
"blip-2": CHAT_TEMPLATES_DIR / "template_blip2.jinja",
"clip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"chameleon": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"deepseek_vl_v2": CHAT_TEMPLATES_DIR / "template_deepseek_vl2.jinja",
"clip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"deepseek_ocr": CHAT_TEMPLATES_DIR / "template_deepseek_ocr.jinja",
"deepseek_vl_v2": CHAT_TEMPLATES_DIR / "template_deepseek_vl2.jinja",
"fuyu": CHAT_TEMPLATES_DIR / "template_fuyu.jinja",
"minicpmv": _get_minicpmv_chat_template_fallback,
"paligemma": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"qwen": _get_qwen_chat_template_fallback,
"siglip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
}