mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-27 16:08:41 +08:00
ChatGLM Support (#1261)
This commit is contained in:
parent
e7f579eb97
commit
1a2bbc9301
@ -166,6 +166,10 @@ class ModelConfig:
|
||||
if getattr(self.hf_config, "num_key_value_heads", None) is not None:
|
||||
return (self.hf_config.num_key_value_heads //
|
||||
parallel_config.tensor_parallel_size)
|
||||
# For ChatGLM-2:
|
||||
if getattr(self.hf_config, "multi_query_group_num", None) is not None:
|
||||
return (self.hf_config.multi_query_group_num //
|
||||
parallel_config.tensor_parallel_size)
|
||||
total_num_attention_heads = self.hf_config.num_attention_heads
|
||||
return total_num_attention_heads // parallel_config.tensor_parallel_size
|
||||
|
||||
|
||||
@ -18,6 +18,7 @@ _MODEL_REGISTRY = {
|
||||
"BaiChuanForCausalLM": BaiChuanForCausalLM, # baichuan-7b
|
||||
"BaichuanForCausalLM": BaichuanForCausalLM, # baichuan-13b
|
||||
"BloomForCausalLM": BloomForCausalLM,
|
||||
"ChatGLMModel": ChatGLMForCausalLM,
|
||||
"FalconForCausalLM": FalconForCausalLM,
|
||||
"GPT2LMHeadModel": GPT2LMHeadModel,
|
||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||
|
||||
@ -13,6 +13,7 @@ from vllm.model_executor.models.mistral import MistralForCausalLM
|
||||
from vllm.model_executor.models.mpt import MptForCausalLM
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.models.qwen import QWenLMHeadModel
|
||||
from vllm.model_executor.models.chatglm import ChatGLMForCausalLM
|
||||
from vllm.model_executor.models.yi import YiForCausalLM
|
||||
|
||||
__all__ = [
|
||||
@ -20,6 +21,7 @@ __all__ = [
|
||||
"BaiChuanForCausalLM",
|
||||
"BaichuanForCausalLM",
|
||||
"BloomForCausalLM",
|
||||
"ChatGLMForCausalLM",
|
||||
"FalconForCausalLM",
|
||||
"GPT2LMHeadModel",
|
||||
"GPTBigCodeForCausalLM",
|
||||
|
||||
408
vllm/model_executor/models/chatglm.py
Normal file
408
vllm/model_executor/models/chatglm.py
Normal file
@ -0,0 +1,408 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/THUDM/ChatGLM2-6B
|
||||
"""Inference-only ChatGLM model compatible with THUDM weights.
|
||||
|
||||
The input of the model is flattened to a 1D tensor of tokens. The model uses
|
||||
InputMetadata to extract the original 2D shape of the input.
|
||||
"""
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import LayerNorm
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.weight_utils import (
|
||||
hf_model_weights_iterator,
|
||||
load_tensor_parallel_weights,
|
||||
)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank,
|
||||
get_tensor_model_parallel_world_size,
|
||||
)
|
||||
from vllm.model_executor.parallel_utils.layers import VocabParallelEmbedding
|
||||
from vllm.model_executor.parallel_utils.layers import (
|
||||
ColumnParallelLinear,
|
||||
RowParallelLinear,
|
||||
)
|
||||
from vllm.sequence import SequenceOutputs
|
||||
|
||||
from vllm.transformers_utils.configs import ChatGLMConfig
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class GLMAttention(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.multi_query_attention = config.multi_query_attention
|
||||
self.total_num_kv_heads = (config.multi_query_group_num
|
||||
if config.multi_query_attention else
|
||||
config.num_attention_heads)
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
self.num_kv_heads = self.total_num_kv_heads // tp_size
|
||||
self.head_dim = config.hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
|
||||
self.query_key_value = ColumnParallelLinear(
|
||||
config.hidden_size,
|
||||
(self.total_num_heads + 2 * self.total_num_kv_heads) *
|
||||
self.head_dim,
|
||||
bias=config.add_qkv_bias,
|
||||
gather_output=False,
|
||||
)
|
||||
self.dense = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
config.hidden_size,
|
||||
bias=config.add_bias_linear,
|
||||
input_is_parallel=True,
|
||||
)
|
||||
|
||||
self.attn = PagedAttentionWithRoPE(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
rotary_dim=self.head_dim // 2,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
is_neox_style=False,
|
||||
# is_glm_style=True
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.query_key_value(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
key_cache, value_cache = kv_cache
|
||||
|
||||
context_layer = self.attn(
|
||||
position_ids,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
key_cache,
|
||||
value_cache,
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
|
||||
attn_output, _ = self.dense(context_layer)
|
||||
|
||||
return attn_output
|
||||
|
||||
|
||||
class GLMMLP(nn.Module):
|
||||
"""MLP.
|
||||
|
||||
MLP will take the input with h hidden state, project it to 4*h
|
||||
hidden dimension, perform nonlinear transformation, and project the
|
||||
state back into h hidden dimension.
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
|
||||
self.add_bias = config.add_bias_linear
|
||||
|
||||
# Project to 4h.
|
||||
self.dense_h_to_4h = ColumnParallelLinear(
|
||||
config.hidden_size,
|
||||
config.ffn_hidden_size * 2,
|
||||
bias=config.add_bias_linear,
|
||||
gather_output=False,
|
||||
)
|
||||
|
||||
self.activation_func = SiluAndMul()
|
||||
|
||||
# Project back to h.
|
||||
self.dense_4h_to_h = RowParallelLinear(
|
||||
config.ffn_hidden_size,
|
||||
config.hidden_size,
|
||||
bias=config.add_bias_linear,
|
||||
input_is_parallel=True,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
# [s, b, 4hp]
|
||||
intermediate_parallel, _ = self.dense_h_to_4h(hidden_states)
|
||||
intermediate_parallel = self.activation_func(intermediate_parallel)
|
||||
# [s, b, h]
|
||||
output, _ = self.dense_4h_to_h(intermediate_parallel)
|
||||
return output
|
||||
|
||||
|
||||
class GLMBlock(nn.Module):
|
||||
"""A single transformer layer.
|
||||
|
||||
Transformer layer takes input with size [s, b, h] and returns an
|
||||
output of the same size.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
):
|
||||
super().__init__()
|
||||
self.apply_residual_connection_post_layernorm = (
|
||||
config.apply_residual_connection_post_layernorm)
|
||||
|
||||
self.fp32_residual_connection = config.fp32_residual_connection
|
||||
|
||||
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
|
||||
# Layernorm on the input data.
|
||||
self.input_layernorm = layer_norm_func(config.hidden_size,
|
||||
eps=config.layernorm_epsilon)
|
||||
|
||||
# Self attention.
|
||||
self.self_attention = GLMAttention(config)
|
||||
self.hidden_dropout = config.hidden_dropout
|
||||
|
||||
# Layernorm on the attention output
|
||||
self.post_attention_layernorm = layer_norm_func(
|
||||
config.hidden_size, eps=config.layernorm_epsilon)
|
||||
|
||||
# MLP
|
||||
self.mlp = GLMMLP(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
# hidden_states: [num_tokens, h]
|
||||
# Layer norm at the beginning of the transformer layer.
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
# Self attention.
|
||||
attention_output = self.self_attention(
|
||||
hidden_states=layernorm_output,
|
||||
position_ids=position_ids,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
|
||||
# Residual connection.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
|
||||
layernorm_input = residual + attention_output
|
||||
|
||||
# Layer norm post the self attention.
|
||||
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
||||
|
||||
# Second residual connection.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = layernorm_input
|
||||
|
||||
output = self.mlp(layernorm_output) + residual
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class GLMTransformer(nn.Module):
|
||||
"""Transformer class."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.post_layer_norm = config.post_layer_norm
|
||||
|
||||
# Number of layers.
|
||||
self.num_layers = config.num_layers
|
||||
|
||||
# Transformer layers.
|
||||
self.layers = nn.ModuleList(
|
||||
[GLMBlock(config) for i in range(self.num_layers)])
|
||||
|
||||
if self.post_layer_norm:
|
||||
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
|
||||
# Final layer norm before output.
|
||||
self.final_layernorm = layer_norm_func(
|
||||
config.hidden_size, eps=config.layernorm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
for i in range(self.num_layers):
|
||||
if cache_events is None:
|
||||
cache_event = None
|
||||
else:
|
||||
cache_event = cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
hidden_states=hidden_states,
|
||||
position_ids=position_ids,
|
||||
kv_cache=kv_caches[i],
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
# Final layer norm.
|
||||
if self.post_layer_norm:
|
||||
hidden_states = self.final_layernorm(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ChatGLMModel(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
|
||||
self.embedding = VocabParallelEmbedding(config.padded_vocab_size,
|
||||
config.hidden_size)
|
||||
|
||||
self.num_layers = config.num_layers
|
||||
self.multi_query_group_num = config.multi_query_group_num
|
||||
self.kv_channels = config.kv_channels
|
||||
self.encoder = GLMTransformer(config)
|
||||
|
||||
self.output_layer = ColumnParallelLinear(
|
||||
config.hidden_size,
|
||||
config.padded_vocab_size,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
params_dtype=config.torch_dtype,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
):
|
||||
inputs_embeds = self.embedding(input_ids)
|
||||
|
||||
# Run encoder.
|
||||
hidden_states = self.encoder(
|
||||
hidden_states=inputs_embeds,
|
||||
position_ids=position_ids,
|
||||
kv_caches=kv_caches,
|
||||
input_metadata=input_metadata,
|
||||
cache_events=cache_events,
|
||||
)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ChatGLMForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self, config: ChatGLMConfig):
|
||||
super().__init__()
|
||||
self.config: ChatGLMConfig = config
|
||||
self.transformer = ChatGLMModel(config)
|
||||
self.lm_head_weight = self.transformer.output_layer.weight
|
||||
self.sampler = Sampler(config.padded_vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
|
||||
input_metadata)
|
||||
return next_tokens
|
||||
|
||||
_column_parallel_weights = [
|
||||
"output_layer.weight",
|
||||
"embedding.weight",
|
||||
]
|
||||
_row_parallel_weights = ["dense_4h_to_h", "self_attention.dense"]
|
||||
|
||||
def load_weights(
|
||||
self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None,
|
||||
):
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
|
||||
q_proj_shard_size = self.config.hidden_size // tp_size
|
||||
kv_proj_shard_size = (self.config.hidden_size //
|
||||
self.config.num_attention_heads *
|
||||
self.config.multi_query_group_num // tp_size)
|
||||
|
||||
mlp_hidden_shard_size = self.config.ffn_hidden_size // tp_size
|
||||
|
||||
state_dict = self.state_dict()
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "word_embeddings" in name:
|
||||
name = name.replace(".word_embeddings", "")
|
||||
|
||||
if name in state_dict:
|
||||
param = state_dict[name]
|
||||
if "query_key_value" in name:
|
||||
q_offset = q_proj_shard_size * tp_rank
|
||||
k_offset = (q_proj_shard_size * tp_size +
|
||||
kv_proj_shard_size * tp_rank)
|
||||
v_offset = (q_proj_shard_size * tp_size +
|
||||
kv_proj_shard_size * (tp_size + tp_rank))
|
||||
wq = loaded_weight[q_offset:q_offset + q_proj_shard_size]
|
||||
wk = loaded_weight[k_offset:k_offset + kv_proj_shard_size]
|
||||
wv = loaded_weight[v_offset:v_offset + kv_proj_shard_size]
|
||||
loaded_weight = torch.cat([wq, wk, wv], dim=0)
|
||||
param.data.copy_(loaded_weight)
|
||||
continue
|
||||
|
||||
if "dense_h_to_4h" in name:
|
||||
w_gate = loaded_weight[mlp_hidden_shard_size *
|
||||
tp_rank:mlp_hidden_shard_size *
|
||||
(tp_rank + 1)]
|
||||
w_proj = loaded_weight[mlp_hidden_shard_size *
|
||||
(tp_size +
|
||||
tp_rank):mlp_hidden_shard_size *
|
||||
(tp_size + tp_rank + 1)]
|
||||
loaded_weight = torch.cat([w_gate, w_proj], dim=0)
|
||||
param.data.copy_(loaded_weight)
|
||||
continue
|
||||
|
||||
load_tensor_parallel_weights(
|
||||
param,
|
||||
loaded_weight,
|
||||
name,
|
||||
self._column_parallel_weights,
|
||||
self._row_parallel_weights,
|
||||
tp_rank,
|
||||
)
|
||||
elif name == "transformer.rotary_pos_emb.inv_freq":
|
||||
continue
|
||||
else:
|
||||
print("Warning never found tensor's name:", name)
|
||||
@ -5,9 +5,10 @@ from transformers import AutoConfig, MptConfig, PretrainedConfig
|
||||
from vllm.transformers_utils.configs import * # pylint: disable=wildcard-import
|
||||
|
||||
_CONFIG_REGISTRY = {
|
||||
"mpt": MptConfig,
|
||||
"baichuan": BaiChuanConfig,
|
||||
"aquila": AquilaConfig,
|
||||
"baichuan": BaiChuanConfig,
|
||||
"chatglm": ChatGLMConfig,
|
||||
"mpt": MptConfig,
|
||||
"qwen": QWenConfig,
|
||||
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
|
||||
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||
from vllm.transformers_utils.configs.aquila import AquilaConfig
|
||||
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||
from vllm.transformers_utils.configs.qwen import QWenConfig
|
||||
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
||||
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
||||
@ -8,8 +9,9 @@ from vllm.transformers_utils.configs.falcon import RWConfig
|
||||
from vllm.transformers_utils.configs.yi import YiConfig
|
||||
|
||||
__all__ = [
|
||||
"BaiChuanConfig",
|
||||
"AquilaConfig",
|
||||
"BaiChuanConfig",
|
||||
"ChatGLMConfig",
|
||||
"QWenConfig",
|
||||
"RWConfig",
|
||||
"YiConfig",
|
||||
|
||||
68
vllm/transformers_utils/configs/chatglm.py
Normal file
68
vllm/transformers_utils/configs/chatglm.py
Normal file
@ -0,0 +1,68 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/THUDM/ChatGLM2-6B
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class ChatGLMConfig(PretrainedConfig):
|
||||
model_type = "chatglm"
|
||||
attribute_map = {
|
||||
"num_hidden_layers": "num_layers",
|
||||
"n_head_kv": "multi_query_group_num",
|
||||
}
|
||||
|
||||
def __init__(self,
|
||||
num_layers=28,
|
||||
padded_vocab_size=65024,
|
||||
hidden_size=4096,
|
||||
ffn_hidden_size=13696,
|
||||
kv_channels=128,
|
||||
num_attention_heads=32,
|
||||
seq_length=2048,
|
||||
hidden_dropout=0.0,
|
||||
attention_dropout=0.0,
|
||||
layernorm_epsilon=1e-5,
|
||||
rmsnorm=True,
|
||||
apply_residual_connection_post_layernorm=False,
|
||||
post_layer_norm=True,
|
||||
add_bias_linear=False,
|
||||
add_qkv_bias=False,
|
||||
interleaved_qkv=False,
|
||||
bias_dropout_fusion=True,
|
||||
multi_query_attention=False,
|
||||
multi_query_group_num=1,
|
||||
apply_query_key_layer_scaling=True,
|
||||
attention_softmax_in_fp32=True,
|
||||
fp32_residual_connection=False,
|
||||
quantization_bit=0,
|
||||
pre_seq_len=None,
|
||||
prefix_projection=False,
|
||||
**kwargs):
|
||||
self.num_layers = num_layers
|
||||
self.vocab_size = padded_vocab_size
|
||||
self.padded_vocab_size = padded_vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.ffn_hidden_size = ffn_hidden_size
|
||||
self.kv_channels = kv_channels
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.seq_length = seq_length
|
||||
self.hidden_dropout = hidden_dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.layernorm_epsilon = layernorm_epsilon
|
||||
self.rmsnorm = rmsnorm
|
||||
self.apply_residual_connection_post_layernorm = (
|
||||
apply_residual_connection_post_layernorm)
|
||||
self.post_layer_norm = post_layer_norm
|
||||
self.add_bias_linear = add_bias_linear
|
||||
self.add_qkv_bias = add_qkv_bias
|
||||
self.bias_dropout_fusion = bias_dropout_fusion
|
||||
self.multi_query_attention = multi_query_attention
|
||||
self.multi_query_group_num = multi_query_group_num
|
||||
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
||||
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
||||
self.fp32_residual_connection = fp32_residual_connection
|
||||
self.quantization_bit = quantization_bit
|
||||
self.pre_seq_len = pre_seq_len
|
||||
self.prefix_projection = prefix_projection
|
||||
self.interleaved_qkv = interleaved_qkv
|
||||
super().__init__(**kwargs)
|
||||
Loading…
x
Reference in New Issue
Block a user