[misc] nsys profile output kernel classifier and visualizer (#22971)

Signed-off-by: Grace Ho <grho@nvidia.com>
This commit is contained in:
Grace Ho 2025-08-15 19:52:51 -07:00 committed by GitHub
parent e4e37ded56
commit 1f83e7d849
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 601 additions and 0 deletions

View File

@ -0,0 +1,175 @@
# gputrc2graph.py
This script processes NVIDIA Nsight Systems (`nsys`) GPU trace files
(`.nsys-rep`) with -t cuda tracing enabled, and generates kernel-level
summaries and visualizations of GPU and non-GPU time. It is useful for
profiling and analyzing nsys profile output.
## Usage
### Command-line Arguments
- `--in_file`
**(required)**
List of input files and their metadata. Each entry should be in the format:
`<nsys-rep>,<engine>,<model>,<elapsed_nonprofiled_sec>`
- `nsys-rep`: Path to the `.nsys-rep` file.
- `engine`: Engine name (e.g., `vllm`).
- `model`: Model name (e.g., `llama`, `gpt-oss`, `ds`).
- `elapsed_nonprofiled_sec`: Wall-clock runtime (in seconds) without
profiling. Specify `0` to use the elapsed time from the nsys-rep file
(this may inflate non-GPU time if actual runtime without profiling is
less). Multiple entries can be provided, separated by spaces.
- `--out_dir`
Output directory for the generated CSV and HTML files.
If not specified, results are saved in the current directory.
- `--title`
Title for the HTML chart/visualization.
- `--nsys_cmd`
Path to the `nsys` command.
Default: `nsys` (assumes it is in your PATH).
Use this if `nsys` is not in your system PATH.
## Notes
- Make sure you have pandas installed.
- Make sure nsys is installed, and specify the path to the `nsys` command with
`--nsys_cmd` if it is not in your PATH.
- For more details on available engines and models, see the help string in
the script or run:
```bash
python3 gputrc2graph.py --help
```
## Example 1: analyze a single profile
To analyze the GPU cycles for say, gpt-oss model with vLLM engine:
1. Run the following command to collect nsys profile, for vllm serve config.
```bash
nsys profile -t cuda -o run1 -f true --trace-fork-before-exec=true \
--cuda-graph-trace=node --delay <DELAY> --duration <DURATION> \
vllm serve openai/gpt-oss-120b ...
```
where:
- DELAY: how many seconds to delay nsys from collecting profiles, needed so
that profiles aren't captured till vllm server has come up and load
generation starts.
- DURATION: how many seconds for nsys profile to run before generating the
profile. This should be > the duration of the run.
2. Run again, this time without collecting the profile, and get the total run
time in seconds. This value will be used by the script to calculate the
CPU(non-GPU) seconds for the analysis.
3. Say the run elapsed time is 306 seconds, from step #2. Run script to
analyze:
```bash
python3 gputrc2graph.py \
--in_file run1.nsys-rep,vllm,gpt-oss,306 \
--title "vLLM-gpt-oss profile"
```
The command will produce 2 files for analysis:
- result.html: this categorizes kernel names into different categories in a
stacked bar chart.
- result.csv: shows how the kernel names are mapped to the different
categories.
### HTML visualization with result.html
The html file shows the number of elapsed seconds due to different GPU
Substages or categories, which consist of moe_gemm (Mixture of Experts GEMM)
kernels the biggest category, at 148 seconds, followed by "attn" or attention
kernels. This lets the user prioritize the kernels to focus on for performance
optimizations.
![Example GPU Trace Visualization](images/html.png)
There's also an appended data table underneath the bar chart for copying out to other post-processing tools.
![Example GPU Trace Table](images/html_tbl.png)
### Kernel to category mapping with result.csv
Suppose the user would like to focus on improving triton kernels. It's not the
biggest consumer of cycles at 9.74 sec but perhaps it hasn't been optimized.
The next step is to use the result.csv to dive into what the kernels are which
compose the triton kernel GPU cycles. The following image shows that
triton_poi_fused__to_copy_add_addmm_cat_.. kernel to be the biggest
contributor to GPU cycles.
![Example GPU Trace csv](images/csv1.png)
## Example 2: analyze multiple profiles
Suppose the user has multiple nsys trace files, captured for different models,
say llama and gpt-oss in this case, and wish to compare their GPU/non-GPU
time, something like the following command can be used.
```bash
python3 gputrc2graph.py \
--in_file run1.nsys-rep,vllm,llama,100 run2.nsys-rep,vllm,gpt-oss,102 \
--out_dir results \
--title "Comparison of vLLM Models"
```
The analysis process is similar to example 1 but now there will be multiple
stack bar charts that can be compared. The categories for the different
kernels will remain the same, so that it's easy to compare the GPU cycles for
the same categories.
Once a category is shown to have more cycles for one configuration than
another, the next step would be to use the csv file to see what kernels are
mapped into that category, and which kernels are taking the largest amount of
time which would cause a difference for the overall category.
## Example 3: add new classification for a new model
Suppose there's a new model ABC that is available for engine DEF, and say there
are 4 kernels to be classified into "gemm" and "attn", where the gemm kernels
have names with "*H*" or "*I*" in them, and attn kernels have names with "*J*"
or "*K*" in them, add a new entry like so:
```python
engine_model = {
'DEF': {
'ABC': {
'layer_anno': {
'Stage': {
'.*': 'layer',
},
'Substage': {
'H|I': 'gemm',
'J|K': 'attn',
'CUDA mem': 'non-gpu-H_D_memops',
'.*': 'misc'
}
}
},
}
'vllm': {...}
```
Basically Substage is a dictionary with a list of key/value pairs, where the
keys are regex's of the kernel names to be classified, and values are the
classification bins which one wishes to compare across engines/models.
The last 2 entries are common for all engine/models, consisting of CUDA memory
operations and a 'misc' for anything that's leftover and can't be classified.
When invoking gputrc2graph.py, specify a trace file with this new model/engine
like the following:
```bash
--infile new.nsys-rep,DEF,ABC,<runtime>
```

View File

@ -0,0 +1,426 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This generates gpu kernel analysis output from nsys rep. Will call nsys
stats -r cuda_gpu_kern_trace, get non-overlapped gpu cycles, then generate
csv and html output for analysis
"""
import argparse
import logging
import os
import regex as re
logger = logging.getLogger(__name__)
# helper data class for annotating kernels
class EngineModelData:
# engine + model mappings
engine_model = {
'vllm': {
'llama': {
'layer_anno': {
'Stage': {
'.*': 'layer',
},
'Substage': {
'gemm': 'gemm',
'fused_moe_kernel|GroupProblemShape|group_gemm_starts':
'moe_gemm', #llama4
'moe|sigmoid': 'moe', #llama4
'CatArrayBatched|prepare_inputs': 'prepare_next',
'flash': 'attn',
'ncclDevKernel|cross_device_reduce':
'nccl_and_custom_ar',
'_norm_': 'norm',
'act_and_mul_': 'silu',
'rotary_embedding_kernel': 'rope',
'SoftMax': 'softmax',
'elementwise': 'elementwise',
'fp8_quant': 'quantize',
'reduce_kernel': 'reduce',
'triton': 'triton_kernel',
'CUDA mem': 'non-gpu-H_D_memops',
'.*': 'misc'
}
}
},
'ds': {
'layer_anno': {
'Stage': {
'.*': 'layer',
},
'Substage': {
'block_fp8|gemm_fp8_blockwise':
'block_fp8_gemm',
'fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal':
'moe_gemm',
'gemm|matmul|nvjet':
'gemm',
'moe|sigmoid|expert':
'moe',
'_fwd_|FlashAttn|_mla_|_attn_':
'attn',
'CatArrayBatched':
'prepare_next',
'ncclDevKernel|cross_device_reduce':
'nccl_and_custom_ar',
'Norm|_norm_':
'norm',
'sbtopk':
'topk',
'act_and_mul_':
'activation',
'compute_position_kernel':
'rope',
'elementwise':
'elementwise',
'fp8_quant|quant_fp8|cvt_fp16_to_fp4':
'quantize',
'reduce':
'reduce',
'SoftMax':
'softmax',
'triton':
'triton_kernel',
'CUDA mem':
'non-gpu-H_D_memops',
'.*':
'misc'
}
}
},
'gpt-oss': {
'layer_anno': {
'Stage': {
'.*': 'layer',
},
'Substage': {
'block_fp8|gemm_fp8_blockwise':
'block_fp8_gemm',
'fused_moe_kernel|_group_gemm|GroupProblemShape|GemmUniversal|bmm_'
# this section is triton_moe_gemm
'|matmul_ogs_|_topk_forward|_combined_routing'
'|_sum_bitmatrix_rows|_compute_writeback_idx':
'moe_gemm',
'gemm|matmul|nvjet':
'gemm',
'moe|sigmoid|expert|splitKreduce':
'moe',
'_fwd_|FlashAttn|_mla_|_attn_|_flash_|flash::prepare_varlen|fmha':
'attn',
'CatArrayBatched':
'prepare_next',
'ncclDevKernel|cross_device_reduce':
'nccl_and_custom_ar',
'Norm|_norm_':
'norm',
'sbtopk':
'topk',
'act_and_mul_':
'activation',
'compute_position_kernel':
'rope',
'elementwise':
'elementwise',
'fp8_quant|quant_fp8|cvt_fp16_to_fp4|quantize':
'quantize',
'reduce':
'reduce',
'SoftMax':
'softmax',
'triton':
'triton_kernel',
'CUDA mem':
'non-gpu-H_D_memops',
'.*':
'misc'
}
}
}
},
}
class GPUTrace2Graph:
"""
Parses output of nsys report, generates csv and bar chart output
"""
def __init__(self, nsys_cmd):
self.nsys_cmd = nsys_cmd
import pandas as pd # avoid importing till needed
self.pd = pd
self.pd.options.mode.copy_on_write = True
# helper functions for generating trace->summary csvs
def gen_nonoverlapped_sum_from_gputrace(self, in_file, out_file):
logger.info('loading %s', in_file)
df = self.pd.read_csv(
in_file,
usecols=['Start (ns)', 'Duration (ns)', 'Device', 'Strm', 'Name'])
df['End (ns)'] = df['Start (ns)'] + df['Duration (ns)']
df = self.sum_non_overlapping_intervals(df)
# get ready to print table with elapsed times per kernel
df['Instances'] = 1
df_sum = df.groupby('Name', as_index=False).agg({
'Elapsed Time (ns)': 'sum',
'Duration (ns)': 'sum',
'Instances': 'size'
})
# generate csv
df_sum['Total Time (sec)'] = df_sum['Duration (ns)'] / 1e9
df_sum['Elapsed Time (sec)'] = df_sum['Elapsed Time (ns)'] / 1e9
df_sum = df_sum.sort_values(by='Elapsed Time (sec)', ascending=False)
df_sum[['Elapsed Time (sec)', 'Total Time (sec)', 'Instances',
'Name']].to_csv(out_file, index=False)
def sum_non_overlapping_intervals(self, df):
"""
returns new sorted df with Elapsed Time (ns) column using
vectorized operations
"""
logger.info("sorting %s trace records by start time", str(df.shape))
# Sort by start time and reset index
df = df.sort_values(by='Start (ns)').reset_index(drop=True)
# Initialize elapsed time as duration
df['Elapsed Time (ns)'] = df['Duration (ns)']
# Get numpy arrays for faster operations
starts = df['Start (ns)'].values
ends = df['End (ns)'].values
# Keep track of current interval end
current_end = ends[0]
display_units = int(len(df) / 100)
# Update current_end for overlapping intervals
for i in range(1, len(df)):
if i % display_units == 0:
print(f'processing trace: {int(i/len(df) * 100)} %', end="\r")
if starts[i] <= current_end:
if ends[i] > current_end:
# Partial overlap
df.iloc[i, df.columns.get_loc('Elapsed Time (ns)'
)] = ends[i] - current_end
current_end = ends[i]
else:
# Complete overlap
df.iloc[i, df.columns.get_loc('Elapsed Time (ns)')] = 0
else:
# No overlap
current_end = ends[i]
return df
# functions for generating html files
def make_html(self, df, output_dir, title):
""" make html graph from df """
import plotly.express as px
if df.empty:
return
output_name = output_dir + '/result'
if not title:
title = 'Model_Engine'
x = 'Model_Engine'
y = 'Elapsed Time (sec)'
color = 'Substage'
""" generate kernel mapping table """
# Sort Model_Engine categories by last field after underscore
df['Model_Engine'] = self.pd.Categorical(
df['Model_Engine'],
sorted(df['Model_Engine'].unique(),
key=lambda x: x.split('_')[-1]))
df[['Model_Engine', color, 'Instances', 'Name',
y]].sort_values(by=color).to_csv(f'{output_name}.csv', index=False)
graph = px.histogram(df.round(2),
x=x,
y=y,
title=(f'{y} for {title}'),
color=color,
text_auto=True)
# wrap x axis labels
graph.update_xaxes(automargin=True)
graph.write_html(f'{output_name}.html')
"""
Generate data table with columns per Model_Engine into result.html
"""
pivot_df = df.pivot_table(values='Elapsed Time (sec)',
index='Substage',
columns='Model_Engine',
aggfunc='sum',
observed=False).round(2)
# Add sum row at bottom
pivot_df.loc['total_elapsed_sec'] = pivot_df.sum()
pivot_df.fillna('').to_html('temp.html')
print('got')
with (open(f'{output_name}.html', 'a', encoding='utf-8') as
outfile, open('temp.html', encoding='utf-8') as infile):
outfile.write(infile.read())
os.remove('temp.html')
print(f'Finished generating: \n'
f' {output_name}.html for stack bar chart \n'
f' {output_name}.csv for Kernel-Substage mapping')
def anno_gpu_kernname(self, df, mapping):
""" add "stage" and "substage" columns """
def anno_gpu_kernname_helper(name, stage):
for kern_name, val in mapping['layer_anno'][stage].items():
if re.search(kern_name, name):
return val
for stage in ['Stage', 'Substage']:
df[stage] = df['Name'].apply(anno_gpu_kernname_helper, stage=stage)
def make_nongpu_row(self, df, nongpu_sec):
""" this will append non-gpu time entry at end of df """
nongpu_row = self.pd.DataFrame([df.iloc[-1]])
nongpu_row['Substage'] = nongpu_row['Name'] = 'CPU(non-GPU)'
nongpu_row['Instances'] = 1
nongpu_row['Elapsed Time (sec)'] = nongpu_sec
return (nongpu_row)
def is_valid_file(self, base_file):
""" asserts if base_file is non-existent or is empty """
assert os.path.isfile(base_file) and os.path.getsize(base_file) > 0, \
f"{base_file} doesn't exist or is empty"
def should_gen_file(self, new_file, base_file):
""" figure out if new file should be generated from base_file """
self.is_valid_file(base_file)
if (os.path.exists(new_file)
and (os.path.getmtime(new_file) > os.path.getmtime(base_file))
and (os.path.getsize(base_file) > 0)):
logger.info('reusing %s', new_file)
return False
else:
logger.info('generating %s', new_file)
return True
def gen_sum_file(self, file):
"""
generates sum file from nsys trace with times per kernel and
returns the name of the sum file
"""
import subprocess
file_dir = os.path.dirname(file)
file_name = os.path.basename(file)
if not file_dir:
file_dir = '.'
# Walk through trace and get the total non-overlapped time
nsys_stats_file = f'{file_dir}/{file_name}_cuda_gpu_trace.csv'
sum_file = f'{file_dir}/{file_name}_cuda_gpu_kernel_tracesum.csv'
if self.should_gen_file(nsys_stats_file, file):
cmd = [
self.nsys_cmd, 'stats', '-r', 'cuda_gpu_trace', file, '-o',
f'{file_dir}/{file_name}'
]
cmd_str = ' '.join(cmd)
logger.info('+ %s', cmd_str)
try:
subprocess.run(cmd)
except Exception:
logger.error(
"%s failed, specify --nsys_cmd for correct nsys path",
cmd_str)
exit(1)
logger.info('generating non-overalapped sum %s', sum_file)
self.gen_nonoverlapped_sum_from_gputrace(nsys_stats_file, sum_file)
self.is_valid_file(sum_file)
logger.info('Finished generating %s', sum_file)
return sum_file
def gen_graph(self, in_file, out_dir, title):
""" generates graph and csv file from in_file into out_dir """
# Initialize an empty DataFrame to store combined data
combined_df = self.pd.DataFrame()
for idx, (file, engine, model, total_sec) in enumerate(in_file):
file_dir = os.path.dirname(file)
file_name = os.path.basename(file)
if not file_dir:
file_dir = '.'
sum_file = self.gen_sum_file(file)
# read kernel summary file
df = self.pd.read_csv(sum_file)
# annotate kernel to their categories
assert EngineModelData.engine_model.get(engine)
assert EngineModelData.engine_model[engine].get(model)
# remove nsys-rep from file_name for shorter x-label
file_name = file_name.replace('.nsys-rep', '')
df['Model_Engine'] = f'{model}_{engine}_{file_name}_{idx}'
self.anno_gpu_kernname(df,
EngineModelData.engine_model[engine][model])
# patch in non-gpu time
gpu_sec = round(df['Elapsed Time (sec)'].sum(), 1)
total_sec = round(float(total_sec), 1)
if total_sec < gpu_sec:
logger.warning(
"Elapsed sec %.2f < GPU sec %.2f resetting Elapsed sec ",
total_sec,
gpu_sec,
)
total_sec = gpu_sec
nongpu_row = self.make_nongpu_row(df, total_sec - gpu_sec)
df = self.pd.concat([df, nongpu_row], ignore_index=True)
combined_df = self.pd.concat([combined_df, df], ignore_index=True)
if out_dir is None:
out_dir = '.'
else:
os.makedirs(out_dir, exist_ok=True)
# generate html file
self.make_html(combined_df, out_dir, title)
def parse_tuple(s):
return tuple(s.split(','))
def main():
logging.basicConfig(format=('%(asctime)s - %(levelname)s - %(message)s'),
level=logging.INFO)
parser = argparse.ArgumentParser(
description=(
'Process nsys rep and generate kernel non-overlapped cycles. \n'
'Example:\n'
"gputrc2graph.py --in_file d1.nsys-rep,vllm,llama,100 \n"
"d2.nsys-rep,vllm,gpt-oss,102 "
"--out_dir results/ --title \"Model=gpt-oss vLLM chart\""),
formatter_class=argparse.RawDescriptionHelpFormatter)
# Build help string showing available engine/model combinations
engine_model_help = []
for engine, models in EngineModelData.engine_model.items():
model_list = list(models.keys())
engine_model_help.append(f"{engine}:[{','.join(model_list)}]")
engine_model_str = ' '.join(engine_model_help)
parser.add_argument(
'--in_file',
type=parse_tuple,
nargs='+',
help=(
'list of (nsys-rep, engine, model, elapsed_nonprofiled_sec) '
'separated by space. Elapsed_nonprofiled_sec is runtime without '
'profiling used to calculate non-gpu time. Specify 0 to use '
'elapsed time from nsys-rep but that might inflate non-gpu time. '
f'Available engine:[model] are: {engine_model_str} '
f'Example: --infile d1.nsys-rep,vllm,llama,100 '
'd2.nsys-rep,vllm,gpt-oss,102'),
required=True)
parser.add_argument('--out_dir', help=('output dir for result.csv/html'))
parser.add_argument('--title', help=('title for html chart'))
parser.add_argument('--nsys_cmd',
help=('nsys cmd, e.g. /usr/bin/nsys, Default: nsys'),
default="nsys")
args = parser.parse_args()
gputrace = GPUTrace2Graph(args.nsys_cmd)
gputrace.gen_graph(args.in_file, args.out_dir, args.title)
if __name__ == '__main__':
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 145 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB