mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 00:05:56 +08:00
adds jais 2 support (#30188)
Signed-off-by: sarathc-cerebras <sarath.chandran@cerebras.net> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
6628758233
commit
28d15ab56b
@ -406,6 +406,7 @@ th {
|
||||
| `InternLM2ForCausalLM` | InternLM2 | `internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc. | ✅︎ | ✅︎ |
|
||||
| `InternLM3ForCausalLM` | InternLM3 | `internlm/internlm3-8b-instruct`, etc. | ✅︎ | ✅︎ |
|
||||
| `JAISLMHeadModel` | Jais | `inceptionai/jais-13b`, `inceptionai/jais-13b-chat`, `inceptionai/jais-30b-v3`, `inceptionai/jais-30b-chat-v3`, etc. | | ✅︎ |
|
||||
| `Jais2ForCausalLM` | Jais2 | `inceptionai/Jais-2-8B-Chat`, `inceptionai/Jais-2-70B-Chat`, etc. | | ✅︎ |
|
||||
| `JambaForCausalLM` | Jamba | `ai21labs/AI21-Jamba-1.5-Large`, `ai21labs/AI21-Jamba-1.5-Mini`, `ai21labs/Jamba-v0.1`, etc. | ✅︎ | ✅︎ |
|
||||
| `KimiLinearForCausalLM` | Kimi-Linear-48B-A3B-Base, Kimi-Linear-48B-A3B-Instruct | `moonshotai/Kimi-Linear-48B-A3B-Base`, `moonshotai/Kimi-Linear-48B-A3B-Instruct` | | ✅︎ |
|
||||
| `Lfm2ForCausalLM` | LFM2 | `LiquidAI/LFM2-1.2B`, `LiquidAI/LFM2-700M`, `LiquidAI/LFM2-350M`, etc. | ✅︎ | ✅︎ |
|
||||
|
||||
@ -295,6 +295,9 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"internlm/internlm3-8b-instruct", trust_remote_code=True
|
||||
),
|
||||
"JAISLMHeadModel": _HfExamplesInfo("inceptionai/jais-13b-chat"),
|
||||
"Jais2ForCausalLM": _HfExamplesInfo(
|
||||
"inceptionai/Jais-2-8B-Chat", min_transformers_version="4.58"
|
||||
),
|
||||
"JambaForCausalLM": _HfExamplesInfo(
|
||||
"ai21labs/AI21-Jamba-1.5-Mini",
|
||||
extras={
|
||||
|
||||
529
vllm/model_executor/models/jais2.py
Normal file
529
vllm/model_executor/models/jais2.py
Normal file
@ -0,0 +1,529 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Inference-only Jais2 model compatible with HuggingFace weights."""
|
||||
|
||||
from collections.abc import Iterable
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import Jais2Config
|
||||
|
||||
from vllm.attention.layer import Attention
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import (
|
||||
get_pp_group,
|
||||
get_tensor_model_parallel_world_size,
|
||||
)
|
||||
from vllm.model_executor.layers.activation import ReLUSquaredActivation
|
||||
from vllm.model_executor.layers.linear import (
|
||||
ColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear,
|
||||
)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE,
|
||||
ParallelLMHead,
|
||||
VocabParallelEmbedding,
|
||||
)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader,
|
||||
maybe_remap_kv_scale_name,
|
||||
)
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import (
|
||||
AutoWeightsLoader,
|
||||
PPMissingLayer,
|
||||
extract_layer_index,
|
||||
is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory,
|
||||
make_layers,
|
||||
maybe_prefix,
|
||||
)
|
||||
|
||||
|
||||
class Jais2MLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: QuantizationConfig | None = None,
|
||||
bias: bool = False,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.up_proj = ColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_size=intermediate_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.up_proj",
|
||||
)
|
||||
self.down_proj = RowParallelLinear(
|
||||
input_size=intermediate_size,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
)
|
||||
self.act_fn = ReLUSquaredActivation()
|
||||
|
||||
def forward(self, x):
|
||||
x, _ = self.up_proj(x)
|
||||
x = self.act_fn(x)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class Jais2Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config: Jais2Config,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
max_position_embeddings: int = 8192,
|
||||
quant_config: QuantizationConfig | None = None,
|
||||
bias: bool = False,
|
||||
cache_config: CacheConfig | None = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
layer_idx = extract_layer_index(prefix)
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
||||
self.head_dim = getattr(
|
||||
config, "head_dim", self.hidden_size // self.total_num_heads
|
||||
)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size=hidden_size,
|
||||
head_size=self.head_dim,
|
||||
total_num_heads=self.total_num_heads,
|
||||
total_num_kv_heads=self.total_num_kv_heads,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
)
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
input_size=self.total_num_heads * self.head_dim,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
|
||||
is_neox_style = True
|
||||
if quant_config is not None and quant_config.get_name() == "gguf":
|
||||
is_neox_style = False
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
rope_parameters=getattr(config, "rope_parameters", None),
|
||||
is_neox_style=is_neox_style,
|
||||
)
|
||||
|
||||
if hasattr(config, "interleaved_sliding_window"):
|
||||
interleaved_sliding_window = config.interleaved_sliding_window
|
||||
if isinstance(interleaved_sliding_window, int):
|
||||
sliding_window = interleaved_sliding_window
|
||||
elif isinstance(interleaved_sliding_window, list):
|
||||
sw_idx = layer_idx % len(interleaved_sliding_window)
|
||||
sliding_window = interleaved_sliding_window[sw_idx]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"{type(interleaved_sliding_window)} is not supported."
|
||||
)
|
||||
else:
|
||||
sliding_window = None
|
||||
|
||||
self.attn = Attention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
per_layer_sliding_window=sliding_window,
|
||||
prefix=f"{prefix}.attn",
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class Jais2DecoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vllm_config: VllmConfig,
|
||||
config: Jais2Config,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
config = config or vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = self.get_quant_config(vllm_config)
|
||||
|
||||
self.hidden_size = config.hidden_size
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
||||
# Support abacusai/Smaug-72B-v0.1 with attention_bias
|
||||
# Support internlm/internlm-7b with bias
|
||||
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
||||
config, "bias", False
|
||||
)
|
||||
self.self_attn = Jais2Attention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(
|
||||
config, "num_key_value_heads", config.num_attention_heads
|
||||
),
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=attention_bias,
|
||||
cache_config=cache_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
self.mlp = Jais2MLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
bias=getattr(config, "mlp_bias", False),
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = nn.LayerNorm(
|
||||
config.hidden_size, eps=config.layer_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = nn.LayerNorm(
|
||||
config.hidden_size, eps=config.layer_norm_eps
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor | None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = (
|
||||
self.input_layernorm(hidden_states + residual),
|
||||
hidden_states + residual,
|
||||
)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = (
|
||||
self.post_attention_layernorm(hidden_states + residual),
|
||||
hidden_states + residual,
|
||||
)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
def get_quant_config(self, vllm_config: VllmConfig) -> QuantizationConfig | None:
|
||||
"""Get quantization config for this layer. Override in subclasses."""
|
||||
return vllm_config.quant_config
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class Jais2Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = "",
|
||||
layer_type: type[nn.Module] = Jais2DecoderLayer,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = (
|
||||
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
|
||||
if lora_config
|
||||
else 0
|
||||
)
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.org_vocab_size = config.vocab_size
|
||||
if get_pp_group().is_first_rank or (
|
||||
config.tie_word_embeddings and get_pp_group().is_last_rank
|
||||
):
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
else:
|
||||
self.embed_tokens = PPMissingLayer()
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: layer_type(
|
||||
config=config,
|
||||
vllm_config=vllm_config,
|
||||
prefix=prefix,
|
||||
),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
if get_pp_group().is_last_rank:
|
||||
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
else:
|
||||
self.norm = PPMissingLayer()
|
||||
|
||||
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size
|
||||
)
|
||||
|
||||
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor | None,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: IntermediateTensors | None,
|
||||
inputs_embeds: torch.Tensor | None = None,
|
||||
) -> torch.Tensor | IntermediateTensors | tuple[torch.Tensor, list[torch.Tensor]]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.embed_input_ids(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(positions, hidden_states, residual)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors(
|
||||
{"hidden_states": hidden_states, "residual": residual}
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states + residual), residual
|
||||
return hidden_states
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
(".qkv_proj", ".q_proj", "q"),
|
||||
(".qkv_proj", ".k_proj", "k"),
|
||||
(".qkv_proj", ".v_proj", "v"),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
if self.quant_config is not None and (
|
||||
scale_name := self.quant_config.get_cache_scale(name)
|
||||
):
|
||||
# Loading kv cache scales for compressed-tensors quantization
|
||||
param = params_dict[scale_name]
|
||||
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
||||
loaded_weight = loaded_weight[0]
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(scale_name)
|
||||
continue
|
||||
if "scale" in name:
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
|
||||
class Jais2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
||||
}
|
||||
|
||||
embedding_modules = {
|
||||
"embed_tokens": "input_embeddings",
|
||||
"lm_head": "output_embeddings",
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
|
||||
self.model = self._init_model(
|
||||
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
||||
)
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=(
|
||||
DEFAULT_VOCAB_PADDING_SIZE
|
||||
# We need bigger padding if using lora for kernel
|
||||
# compatibility
|
||||
if not lora_config
|
||||
else lora_config.lora_vocab_padding_size
|
||||
),
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"),
|
||||
)
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
|
||||
|
||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(
|
||||
self.unpadded_vocab_size, config.vocab_size, logit_scale
|
||||
)
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors
|
||||
)
|
||||
|
||||
def _init_model(self, vllm_config: VllmConfig, prefix: str = ""):
|
||||
return Jais2Model(vllm_config=vllm_config, prefix=prefix)
|
||||
|
||||
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.embed_input_ids(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: IntermediateTensors | None = None,
|
||||
inputs_embeds: torch.Tensor | None = None,
|
||||
) -> torch.Tensor | IntermediateTensors:
|
||||
model_output = self.model(
|
||||
input_ids, positions, intermediate_tensors, inputs_embeds
|
||||
)
|
||||
return model_output
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
) -> torch.Tensor | None:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
||||
loader = AutoWeightsLoader(
|
||||
self,
|
||||
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
||||
)
|
||||
return loader.load_weights(weights)
|
||||
@ -127,6 +127,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"InternLM2VEForCausalLM": ("internlm2_ve", "InternLM2VEForCausalLM"),
|
||||
"InternLM3ForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"JAISLMHeadModel": ("jais", "JAISLMHeadModel"),
|
||||
"Jais2ForCausalLM": ("jais2", "Jais2ForCausalLM"),
|
||||
"JambaForCausalLM": ("jamba", "JambaForCausalLM"),
|
||||
"KimiLinearForCausalLM": ("kimi_linear", "KimiLinearForCausalLM"), # noqa: E501
|
||||
"Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user