mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 16:45:43 +08:00
[Docs] Fix warnings in mkdocs build (continued) (#23743)
Signed-off-by: Zerohertz <ohg3417@gmail.com> Signed-off-by: Hyogeun Oh (오효근) <ohg3417@gmail.com>
This commit is contained in:
parent
dd58932280
commit
4e4d017b6f
@ -207,7 +207,7 @@ class NaiveBlockAllocator(BlockAllocator):
|
||||
|
||||
Args:
|
||||
absolute_id (int): The absolute block id for the block
|
||||
in whole allocator.
|
||||
in whole allocator.
|
||||
|
||||
Returns:
|
||||
int: The zero-offset block id on certain device.
|
||||
|
||||
@ -61,7 +61,7 @@ class PrefixCachingBlockAllocator(BlockAllocator):
|
||||
Args:
|
||||
num_blocks (int): The total number of blocks to manage.
|
||||
block_size (int): The size of each block in tokens.
|
||||
block_ids(Optional[Iterable[int]], optional): An optional iterable of
|
||||
block_ids (Optional[Iterable[int]], optional): An optional iterable of
|
||||
block IDs. If not provided, block IDs will be assigned sequentially
|
||||
from 0 to num_blocks - 1.
|
||||
"""
|
||||
|
||||
@ -657,7 +657,7 @@ class Scheduler:
|
||||
`budget.num_batched_tokens` has not enough capacity to schedule
|
||||
all tokens.
|
||||
partial_prefill_metadata: information about the partial prefills
|
||||
that are currently running
|
||||
that are currently running
|
||||
|
||||
Returns:
|
||||
SchedulerRunningOutputs.
|
||||
|
||||
@ -491,7 +491,8 @@ class TorchSDPABackendImpl(AttentionImpl[TorchSDPAMetadata]):
|
||||
query: shape = [num_tokens, num_heads * head_size]
|
||||
key: shape = [num_tokens, num_kv_heads * head_size]
|
||||
value: shape = [num_tokens, num_kv_heads * head_size]
|
||||
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size * num_kv_heads * head_size]
|
||||
NOTE: kv_cache will be an empty tensor with shape [0]
|
||||
for profiling run.
|
||||
attn_metadata: Metadata for attention.
|
||||
|
||||
@ -438,7 +438,8 @@ class FlashAttentionImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -637,11 +637,9 @@ class FlashInferImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache: shape -
|
||||
# NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
|
||||
# HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
|
||||
|
||||
|
||||
kv_cache: KV cache tensor with different possible shapes:
|
||||
- NHD: [num_blocks, 2, block_size, num_kv_heads, head_size]
|
||||
- HND: [num_blocks, 2, num_kv_heads, block_size, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -689,7 +689,8 @@ class FlexAttentionImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -235,7 +235,8 @@ class PallasAttentionBackendImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads * head_size]
|
||||
key: shape = [num_tokens, num_kv_heads * head_size]
|
||||
value: shape = [num_tokens, num_kv_heads * head_size]
|
||||
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
||||
kv_cache: shape =
|
||||
[num_blocks, block_size, num_kv_heads * 2, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
@ -329,7 +330,7 @@ def write_to_kv_cache(
|
||||
Args:
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
||||
kv_cache: shape = [num_blocks, block_size, num_kv_heads * 2, head_size]
|
||||
num_slices_per_kv_cache_update_block: int
|
||||
"""
|
||||
_, page_size, num_combined_kv_heads, head_size = kv_cache.shape
|
||||
|
||||
@ -429,7 +429,8 @@ class AiterFlashAttentionImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -362,7 +362,8 @@ class TreeAttentionImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -285,7 +285,8 @@ class TritonAttentionImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -330,7 +330,8 @@ class XFormersAttentionImpl(AttentionImpl):
|
||||
query: shape = [num_tokens, num_heads, head_size]
|
||||
key: shape = [num_tokens, num_kv_heads, head_size]
|
||||
value: shape = [num_tokens, num_kv_heads, head_size]
|
||||
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
kv_cache: shape =
|
||||
[2, num_blocks, block_size, num_kv_heads, head_size]
|
||||
attn_metadata: Metadata for attention.
|
||||
Returns:
|
||||
shape = [num_tokens, num_heads * head_size]
|
||||
|
||||
@ -255,9 +255,9 @@ def compute_encoder_budget(
|
||||
|
||||
Returns:
|
||||
- Compute budget for encoder execution, measured in number of tokens
|
||||
from the input sequence.
|
||||
from the input sequence.
|
||||
- Space budget for encoder cache size, measured in number of tokens
|
||||
from the input sequence.
|
||||
from the input sequence.
|
||||
"""
|
||||
if mm_registry.supports_multimodal_inputs(model_config):
|
||||
max_tokens_by_modality = mm_registry \
|
||||
@ -303,9 +303,9 @@ def compute_mm_encoder_budget(
|
||||
|
||||
Returns:
|
||||
- Compute budget for encoder execution, measured in number of tokens
|
||||
from the input sequence.
|
||||
from the input sequence.
|
||||
- Space budget for encoder cache size, measured in number of tokens
|
||||
from the input sequence.
|
||||
from the input sequence.
|
||||
"""
|
||||
|
||||
if not max_tokens_by_modality:
|
||||
|
||||
@ -119,7 +119,8 @@ class KVCacheCoordinator(ABC):
|
||||
|
||||
Args:
|
||||
request: The request.
|
||||
num_tokens: The total number of tokens that need to be cached
|
||||
num_computed_tokens: The total number of tokens
|
||||
that need to be cached
|
||||
(including tokens that are already cached).
|
||||
"""
|
||||
for manager in self.single_type_managers:
|
||||
|
||||
@ -54,14 +54,15 @@ class KVCacheBlocks:
|
||||
def get_block_ids(
|
||||
self,
|
||||
allow_none: bool = False,
|
||||
):
|
||||
) -> Optional[tuple[list[int], ...]]:
|
||||
"""
|
||||
Converts the KVCacheBlocks instance to block_ids.
|
||||
|
||||
Returns:
|
||||
tuple[list[int], ...]: A tuple of lists where
|
||||
* the outer tuple corresponds to KV cache groups
|
||||
* each inner list contains the block_ids of the blocks in that group
|
||||
tuple[list[int], ...]: A tuple of lists where:
|
||||
- the outer tuple corresponds to KV cache groups
|
||||
- each inner list contains the block_ids of the blocks in that
|
||||
group
|
||||
"""
|
||||
if allow_none and all(len(group) == 0 for group in self.blocks):
|
||||
return None
|
||||
|
||||
@ -8,6 +8,7 @@ from vllm.distributed.kv_transfer.kv_connector.utils import KVOutputAggregator
|
||||
from vllm.executor.ray_distributed_executor import ( # noqa
|
||||
RayDistributedExecutor as RayDistributedExecutorV0)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.v1.core.sched.output import SchedulerOutput
|
||||
from vllm.v1.engine import ReconfigureDistributedRequest, ReconfigureRankType
|
||||
from vllm.v1.executor.abstract import Executor
|
||||
from vllm.v1.outputs import ModelRunnerOutput
|
||||
@ -64,7 +65,7 @@ class RayDistributedExecutor(RayDistributedExecutorV0, Executor):
|
||||
|
||||
def execute_model(
|
||||
self,
|
||||
scheduler_output,
|
||||
scheduler_output: SchedulerOutput,
|
||||
) -> Union[ModelRunnerOutput, Future[ModelRunnerOutput]]:
|
||||
"""Execute the model on the Ray workers.
|
||||
|
||||
|
||||
@ -36,7 +36,7 @@ def setup_multiprocess_prometheus():
|
||||
"and vLLM will properly handle cleanup.")
|
||||
|
||||
|
||||
def get_prometheus_registry():
|
||||
def get_prometheus_registry() -> CollectorRegistry:
|
||||
"""Get the appropriate prometheus registry based on multiprocessing
|
||||
configuration.
|
||||
|
||||
|
||||
@ -91,7 +91,7 @@ class LogitsProcessor(ABC):
|
||||
to each forward pass.
|
||||
|
||||
Args:
|
||||
batch_update is non-None iff there have been
|
||||
changes to the batch makeup.
|
||||
batch_update: Non-None iff there have been changes
|
||||
to the batch makeup.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@ -68,7 +68,7 @@ class RejectionSampler(nn.Module):
|
||||
different requests are flattened into a single tensor because
|
||||
this is the shape of the output logits.
|
||||
NOTE: `target_logits` can be updated in place to save memory.
|
||||
bonus_token_ids_tensor (torch.Tensor):
|
||||
bonus_token_ids (torch.Tensor):
|
||||
A tensor containing bonus tokens. Shape is [batch_size, 1].
|
||||
Bonus tokens are added to the end of the sequence if all
|
||||
proposed tokens are accepted. We generate the bonus tokens
|
||||
|
||||
@ -89,7 +89,7 @@ class Sampler(nn.Module):
|
||||
Gather logprobs for topk and sampled/prompt token.
|
||||
|
||||
Args:
|
||||
logits: (num tokens) x (vocab) tensor
|
||||
logprobs: (num tokens) x (vocab) tensor
|
||||
num_logprobs: minimum number of logprobs to
|
||||
retain per token
|
||||
token_ids: prompt tokens (if prompt logprobs)
|
||||
|
||||
@ -110,7 +110,7 @@ class StructuredOutputBackend(ABC):
|
||||
|
||||
Args:
|
||||
request_type (StructuredOutputOptions): The type of structured
|
||||
output request.
|
||||
output request.
|
||||
grammar_spec (str): The grammar specification to compile.
|
||||
|
||||
Returns:
|
||||
@ -124,7 +124,7 @@ class StructuredOutputBackend(ABC):
|
||||
|
||||
Args:
|
||||
max_num_seqs (int): The maximum number of sequences for which
|
||||
to allocate the bitmask.
|
||||
to allocate the bitmask.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
|
||||
@ -525,9 +525,6 @@ class InputBatch:
|
||||
Any consecutive empty indices at the very end of the list are not
|
||||
filled.
|
||||
|
||||
Args:
|
||||
empty_req_indices: empty indices which may be filled.
|
||||
|
||||
Returns:
|
||||
swaps: list of (from,to) swap tuples for moved requests
|
||||
empty_req_indices: indices not filled by condensation
|
||||
|
||||
@ -2955,7 +2955,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
Args:
|
||||
kv_cache_config: The KV cache config
|
||||
kv_cache_raw_tensors: The KV cache buffer of each layer, with
|
||||
correct size but uninitialized shape.
|
||||
correct size but uninitialized shape.
|
||||
Returns:
|
||||
Dict[str, torch.Tensor]: A map between layer names to their
|
||||
corresponding memory buffer for KV cache.
|
||||
|
||||
@ -552,7 +552,7 @@ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
return kv_cache_spec
|
||||
|
||||
def _get_slot_mapping_metadata(self, num_reqs,
|
||||
num_scheduled_tokens_per_req):
|
||||
num_scheduled_tokens_per_req) -> np.ndarray:
|
||||
"""
|
||||
Computes metadata for mapping slots to blocks in the key-value (KV)
|
||||
cache for a batch of requests.
|
||||
@ -565,15 +565,15 @@ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
Args:
|
||||
num_reqs (int): Number of requests in the current batch.
|
||||
num_scheduled_tokens_per_req (int or np.ndarray): Number of tokens
|
||||
to be scheduled for each request.
|
||||
to be scheduled for each request.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D array of shape (total_block_len, 3), where each row
|
||||
contains:
|
||||
contains:
|
||||
- kv_cache_start_index (int): The starting index in the KV cache
|
||||
for the corresponding slice.
|
||||
for the corresponding slice.
|
||||
- new_kv_start_index (int): The starting index in the new KV
|
||||
cache for the corresponding slice.
|
||||
cache for the corresponding slice.
|
||||
- slice_len (int): The length of the slice.
|
||||
"""
|
||||
slices_start = self.input_batch.num_computed_tokens_cpu[:num_reqs]
|
||||
|
||||
@ -172,10 +172,10 @@ def scatter_mm_placeholders(
|
||||
|
||||
Args:
|
||||
embeds: The multimodal embeddings.
|
||||
Shape: `(num_embeds, embed_dim)`
|
||||
Shape: `(num_embeds, embed_dim)`
|
||||
is_embed: A boolean mask indicating which positions in the placeholder
|
||||
tokens need to be filled with multimodal embeddings.
|
||||
Shape: `(num_placeholders, num_embeds)`
|
||||
tokens need to be filled with multimodal embeddings.
|
||||
Shape: `(num_placeholders, num_embeds)`
|
||||
"""
|
||||
if is_embed is None:
|
||||
return embeds
|
||||
@ -278,7 +278,7 @@ def bind_kv_cache(
|
||||
Args:
|
||||
kv_caches: The allocated kv_caches with layer names as keys.
|
||||
forward_context: The global forward context containing all Attention
|
||||
layers with layer names as keys.
|
||||
layers with layer names as keys.
|
||||
runner_kv_caches: The kv_cache declared by ModelRunner.
|
||||
"""
|
||||
# Bind kv_caches to ModelRunner
|
||||
|
||||
@ -37,7 +37,7 @@ class WorkerBase(WorkerBaseV0):
|
||||
rank: Global rank in distributed setup
|
||||
distributed_init_method: Distributed initialization method
|
||||
is_driver_worker: Whether this worker handles driver
|
||||
responsibilities
|
||||
responsibilities
|
||||
"""
|
||||
# Configuration storage
|
||||
super().__init__(vllm_config=vllm_config)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user