mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:35:24 +08:00
[PERF] Decouple projections from GDN custom op (#27512)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
This commit is contained in:
parent
97e3dda84b
commit
5fd8f02ea9
@ -462,7 +462,7 @@ class CompilationConfig:
|
||||
"vllm::short_conv",
|
||||
"vllm::linear_attention",
|
||||
"vllm::plamo2_mamba_mixer",
|
||||
"vllm::gdn_attention",
|
||||
"vllm::gdn_attention_core",
|
||||
"vllm::kda_attention",
|
||||
"vllm::sparse_attn_indexer",
|
||||
]
|
||||
|
||||
@ -12,6 +12,7 @@ from vllm.model_executor.layers.batch_invariant import (
|
||||
rms_norm_batch_invariant,
|
||||
vllm_is_batch_invariant,
|
||||
)
|
||||
from vllm.model_executor.layers.fla.ops.layernorm_guard import rmsnorm_fn
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils.torch_utils import direct_register_custom_op
|
||||
|
||||
@ -369,6 +370,107 @@ class GemmaRMSNorm(CustomOp):
|
||||
return self.forward_native(x, residual)
|
||||
|
||||
|
||||
@CustomOp.register("rms_norm_gated")
|
||||
class RMSNormGated(CustomOp):
|
||||
"""RMS Normalization with optional gating.
|
||||
|
||||
This is a native PyTorch implementation that supports:
|
||||
- Standard RMS normalization
|
||||
- Group RMS normalization
|
||||
- Optional gating with SiLU activation
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
eps: float = 1e-5,
|
||||
group_size: int | None = None,
|
||||
norm_before_gate: bool = False,
|
||||
device: torch.device | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
):
|
||||
"""Initialize RMSNormGated.
|
||||
|
||||
Args:
|
||||
hidden_size: Size of the hidden dimension
|
||||
eps: Epsilon for numerical stability
|
||||
group_size: If not None, do GroupNorm with each group
|
||||
having group_size elements.
|
||||
group_size=None is equivalent to group_size=hidden_size
|
||||
(i.e. there's only 1 group).
|
||||
norm_before_gate: If True and z is provided: out = norm(x) * silu(z)
|
||||
If False and z is provided: out = norm(x * silu(z))
|
||||
device: Device to create parameters on
|
||||
dtype: Data type for parameters
|
||||
"""
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
||||
self.register_parameter("bias", None)
|
||||
self.group_size = group_size
|
||||
self.norm_before_gate = norm_before_gate
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
torch.nn.init.ones_(self.weight)
|
||||
|
||||
def forward_native(
|
||||
self, x: torch.Tensor, z: torch.Tensor | None = None
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Native PyTorch implementation of RMS normalization with gating.
|
||||
|
||||
Args:
|
||||
x: Input tensor
|
||||
z: Optional gating tensor
|
||||
|
||||
Returns:
|
||||
Normalized (and optionally gated) tensor
|
||||
|
||||
If z is not None:
|
||||
- norm_before_gate=True: out = norm(x) * silu(z)
|
||||
- norm_before_gate=False: out = norm(x * silu(z))
|
||||
"""
|
||||
# Apply gating before normalization if needed
|
||||
if z is not None and not self.norm_before_gate:
|
||||
x = x * F.silu(z)
|
||||
|
||||
# RMS Normalization
|
||||
if self.group_size is None:
|
||||
# Standard RMS norm across the last dimension
|
||||
variance = x.pow(2).mean(dim=-1, keepdim=True)
|
||||
x_normed = x * torch.rsqrt(variance + self.eps)
|
||||
out = x_normed * self.weight
|
||||
else:
|
||||
# Group RMS norm
|
||||
from einops import rearrange
|
||||
|
||||
x_group = rearrange(x, "... (g d) -> ... g d", d=self.group_size)
|
||||
variance = x_group.pow(2).mean(dim=-1, keepdim=True)
|
||||
x_normed = x_group * torch.rsqrt(variance + self.eps)
|
||||
out = rearrange(x_normed, "... g d -> ... (g d)") * self.weight
|
||||
|
||||
# Apply gating after normalization if needed
|
||||
if z is not None and self.norm_before_gate:
|
||||
out = out * F.silu(z)
|
||||
|
||||
return out
|
||||
|
||||
def forward_cuda(
|
||||
self, x: torch.Tensor, z: torch.Tensor | None = None
|
||||
) -> torch.Tensor:
|
||||
return rmsnorm_fn(
|
||||
x,
|
||||
self.weight,
|
||||
self.bias,
|
||||
z=z,
|
||||
eps=self.eps,
|
||||
group_size=self.group_size,
|
||||
norm_before_gate=self.norm_before_gate,
|
||||
)
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
"""
|
||||
Layer Normalization.
|
||||
|
||||
@ -30,12 +30,14 @@ from vllm.distributed import (
|
||||
from vllm.forward_context import ForwardContext, get_forward_context
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.fla.ops import (
|
||||
RMSNormGated,
|
||||
chunk_gated_delta_rule,
|
||||
fused_recurrent_gated_delta_rule,
|
||||
)
|
||||
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
|
||||
from vllm.model_executor.layers.layernorm import GemmaRMSNorm as Qwen3NextRMSNorm
|
||||
from vllm.model_executor.layers.layernorm import (
|
||||
GemmaRMSNorm as Qwen3NextRMSNorm,
|
||||
)
|
||||
from vllm.model_executor.layers.layernorm import RMSNormGated
|
||||
from vllm.model_executor.layers.linear import (
|
||||
ColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
@ -436,17 +438,66 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
):
|
||||
return torch.ops.vllm.gdn_attention(
|
||||
hidden_states,
|
||||
output,
|
||||
"""
|
||||
Forward pass with three parts:
|
||||
1. Input projection
|
||||
2. Core attention (custom op)
|
||||
3. Output projection
|
||||
"""
|
||||
num_tokens = hidden_states.size(0)
|
||||
|
||||
# ============================================================
|
||||
# Part 1: Input Projection
|
||||
# ============================================================
|
||||
projected_states_qkvz, _ = self.in_proj_qkvz(hidden_states)
|
||||
projected_states_ba, _ = self.in_proj_ba(hidden_states)
|
||||
query, key, value, z, b, a = self.fix_query_key_value_ordering(
|
||||
projected_states_qkvz, projected_states_ba
|
||||
)
|
||||
query, key, value = map(
|
||||
lambda x: rearrange(x, "l p d -> l (p d)"), (query, key, value)
|
||||
)
|
||||
mixed_qkv = torch.cat((query, key, value), dim=-1)
|
||||
|
||||
# ============================================================
|
||||
# Part 2: Core Attention (Custom Op)
|
||||
# ============================================================
|
||||
core_attn_out = torch.zeros(
|
||||
(num_tokens, self.num_v_heads // self.tp_size, self.head_v_dim),
|
||||
dtype=hidden_states.dtype,
|
||||
device=hidden_states.device,
|
||||
)
|
||||
|
||||
torch.ops.vllm.gdn_attention_core(
|
||||
mixed_qkv,
|
||||
b,
|
||||
a,
|
||||
core_attn_out,
|
||||
self.prefix,
|
||||
)
|
||||
|
||||
def _forward(
|
||||
# ============================================================
|
||||
# Part 3: Output Projection
|
||||
# ============================================================
|
||||
z_shape_og = z.shape
|
||||
# Reshape input data into 2D tensor
|
||||
core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
|
||||
z = z.reshape(-1, z.shape[-1])
|
||||
core_attn_out = self.norm(core_attn_out, z)
|
||||
core_attn_out = core_attn_out.reshape(z_shape_og)
|
||||
core_attn_out = rearrange(core_attn_out, "... h d -> ... (h d)")
|
||||
output[:num_tokens], _ = self.out_proj(core_attn_out)
|
||||
|
||||
def _forward_core(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
mixed_qkv: torch.Tensor,
|
||||
b: torch.Tensor,
|
||||
a: torch.Tensor,
|
||||
core_attn_out: torch.Tensor,
|
||||
):
|
||||
"""
|
||||
Core attention computation (called by custom op).
|
||||
"""
|
||||
forward_context = get_forward_context()
|
||||
attn_metadata: AttentionMetadata = forward_context.attn_metadata
|
||||
|
||||
@ -471,18 +522,11 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
num_actual_tokens = attn_metadata.num_actual_tokens
|
||||
num_accepted_tokens = attn_metadata.num_accepted_tokens
|
||||
|
||||
# 1. Set up dimensions for reshapes later
|
||||
projected_states_qkvz, _ = self.in_proj_qkvz(hidden_states[:num_actual_tokens])
|
||||
projected_states_ba, _ = self.in_proj_ba(hidden_states[:num_actual_tokens])
|
||||
query, key, value, z, b, a = self.fix_query_key_value_ordering(
|
||||
projected_states_qkvz, projected_states_ba
|
||||
)
|
||||
query, key, value = map(
|
||||
lambda x: rearrange(x, "l p d -> l (p d)"), (query, key, value)
|
||||
)
|
||||
mixed_qkv = torch.cat((query, key, value), dim=-1)
|
||||
mixed_qkv = mixed_qkv[:num_actual_tokens]
|
||||
b = b[:num_actual_tokens]
|
||||
a = a[:num_actual_tokens]
|
||||
|
||||
# 2. Convolution sequence transformation
|
||||
# 1. Convolution sequence transformation
|
||||
conv_weights = self.conv1d.weight.view(
|
||||
self.conv1d.weight.size(0), self.conv1d.weight.size(2)
|
||||
)
|
||||
@ -498,7 +542,7 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
mixed_qkv_spec = None
|
||||
mixed_qkv_non_spec = mixed_qkv
|
||||
|
||||
# 2.1: process the mutli-query part
|
||||
# 1.1: Process the multi-query part
|
||||
if spec_sequence_masks is not None:
|
||||
mixed_qkv_spec = causal_conv1d_update(
|
||||
mixed_qkv_spec,
|
||||
@ -515,7 +559,7 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
validate_data=False,
|
||||
)
|
||||
|
||||
# 2.2: process the remaining part
|
||||
# 1.2: Process the remaining part
|
||||
if attn_metadata.num_prefills > 0:
|
||||
mixed_qkv_non_spec_T = mixed_qkv_non_spec.transpose(0, 1)
|
||||
# - "cache_indices" updates the conv_state cache in positions
|
||||
@ -573,9 +617,9 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
g_non_spec = g
|
||||
beta_non_spec = beta
|
||||
|
||||
# 3. Recurrent attention
|
||||
# 2. Recurrent attention
|
||||
|
||||
# 3.1: process the mutlti-query part
|
||||
# 2.1: Process the multi-query part
|
||||
if spec_sequence_masks is not None:
|
||||
core_attn_out_spec, last_recurrent_state = fused_recurrent_gated_delta_rule(
|
||||
q=query_spec,
|
||||
@ -593,7 +637,7 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
else:
|
||||
core_attn_out_spec, last_recurrent_state = None, None
|
||||
|
||||
# 3.2: process the remaining part
|
||||
# 2.2: Process the remaining part
|
||||
if attn_metadata.num_prefills > 0:
|
||||
initial_state = ssm_state[non_spec_state_indices_tensor].contiguous()
|
||||
initial_state[~has_initial_state, ...] = 0
|
||||
@ -636,30 +680,20 @@ class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
|
||||
else:
|
||||
core_attn_out_non_spec, last_recurrent_state = None, None
|
||||
|
||||
# Merge core attention output
|
||||
# 3. Merge core attention output
|
||||
if spec_sequence_masks is not None and core_attn_out_non_spec is not None:
|
||||
core_attn_out = torch.empty(
|
||||
merged_out = torch.empty(
|
||||
(1, num_actual_tokens, *core_attn_out_spec.shape[2:]),
|
||||
dtype=core_attn_out_non_spec.dtype,
|
||||
device=core_attn_out_non_spec.device,
|
||||
)
|
||||
core_attn_out.index_copy_(1, spec_token_indx, core_attn_out_spec)
|
||||
core_attn_out.index_copy_(1, non_spec_token_indx, core_attn_out_non_spec)
|
||||
|
||||
merged_out.index_copy_(1, spec_token_indx, core_attn_out_spec)
|
||||
merged_out.index_copy_(1, non_spec_token_indx, core_attn_out_non_spec)
|
||||
core_attn_out[:num_actual_tokens] = merged_out.squeeze(0)
|
||||
elif spec_sequence_masks is not None:
|
||||
core_attn_out = core_attn_out_spec
|
||||
core_attn_out[:num_actual_tokens] = core_attn_out_spec.squeeze(0)
|
||||
else:
|
||||
core_attn_out = core_attn_out_non_spec
|
||||
|
||||
z_shape_og = z.shape
|
||||
# reshape input data into 2D tensor
|
||||
core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
|
||||
z = z.reshape(-1, z.shape[-1])
|
||||
core_attn_out = self.norm(core_attn_out, z)
|
||||
core_attn_out = core_attn_out.reshape(z_shape_og)
|
||||
core_attn_out = rearrange(core_attn_out, "... h d -> ... (h d)")
|
||||
|
||||
output[:num_actual_tokens], _ = self.out_proj(core_attn_out)
|
||||
core_attn_out[:num_actual_tokens] = core_attn_out_non_spec.squeeze(0)
|
||||
|
||||
|
||||
class Qwen3NextAttention(nn.Module):
|
||||
@ -1270,29 +1304,44 @@ class Qwen3NextForCausalLM(
|
||||
return self.model.get_expert_mapping()
|
||||
|
||||
|
||||
def gdn_attention(
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
def gdn_attention_core(
|
||||
mixed_qkv: torch.Tensor,
|
||||
b: torch.Tensor,
|
||||
a: torch.Tensor,
|
||||
core_attn_out: torch.Tensor,
|
||||
layer_name: str,
|
||||
) -> None:
|
||||
"""
|
||||
Custom op for the core attention computation.
|
||||
Only handles the convolution + recurrent attention part.
|
||||
Input/output projections are handled outside this op.
|
||||
"""
|
||||
forward_context: ForwardContext = get_forward_context()
|
||||
self = forward_context.no_compile_layers[layer_name]
|
||||
self._forward(hidden_states=hidden_states, output=output)
|
||||
self._forward_core(
|
||||
mixed_qkv=mixed_qkv,
|
||||
b=b,
|
||||
a=a,
|
||||
core_attn_out=core_attn_out,
|
||||
)
|
||||
|
||||
|
||||
def gdn_attention_fake(
|
||||
hidden_states: torch.Tensor,
|
||||
output: torch.Tensor,
|
||||
def gdn_attention_core_fake(
|
||||
mixed_qkv: torch.Tensor,
|
||||
b: torch.Tensor,
|
||||
a: torch.Tensor,
|
||||
core_attn_out: torch.Tensor,
|
||||
layer_name: str,
|
||||
) -> None:
|
||||
"""Fake implementation for torch.compile."""
|
||||
return
|
||||
|
||||
|
||||
direct_register_custom_op(
|
||||
op_name="gdn_attention",
|
||||
op_func=gdn_attention,
|
||||
mutates_args=["output"],
|
||||
fake_impl=gdn_attention_fake,
|
||||
op_name="gdn_attention_core",
|
||||
op_func=gdn_attention_core,
|
||||
mutates_args=["core_attn_out"],
|
||||
fake_impl=gdn_attention_core_fake,
|
||||
)
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user