Vadim Gimpelson 5fd8f02ea9
[PERF] Decouple projections from GDN custom op (#27512)
Signed-off-by: Vadim Gimpelson <vadim.gimpelson@gmail.com>
2025-11-04 08:11:41 -08:00

490 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Custom normalization layers."""
import torch
import torch.nn as nn
import torch.nn.functional as F
import vllm.envs as envs
from vllm.model_executor.custom_op import CustomOp
from vllm.model_executor.layers.batch_invariant import (
rms_norm_batch_invariant,
vllm_is_batch_invariant,
)
from vllm.model_executor.layers.fla.ops.layernorm_guard import rmsnorm_fn
from vllm.platforms import current_platform
from vllm.utils.torch_utils import direct_register_custom_op
def is_rocm_aiter_rmsnorm_enabled() -> bool:
return envs.VLLM_ROCM_USE_AITER_RMSNORM and envs.VLLM_ROCM_USE_AITER
def rms_norm(
x: torch.Tensor, weight: torch.Tensor, variance_epsilon: float
) -> torch.Tensor:
from vllm import _custom_ops as ops
if vllm_is_batch_invariant():
return rms_norm_batch_invariant(x, weight, variance_epsilon)
out = torch.empty_like(x)
ops.rms_norm(
out,
x,
weight,
variance_epsilon,
)
return out
def fused_add_rms_norm(
x: torch.Tensor,
residual: torch.Tensor,
weight: torch.Tensor,
variance_epsilon: float,
) -> tuple[torch.Tensor, torch.Tensor]:
from vllm import _custom_ops as ops
if vllm_is_batch_invariant():
return rms_norm_batch_invariant(
x + residual, weight, variance_epsilon
), x + residual
ops.fused_add_rms_norm(
x,
residual,
weight,
variance_epsilon,
)
return x, residual
def rocm_aiter_rms_norm_impl(
x: torch.Tensor, weight: torch.Tensor, variance_epsilon: float
) -> torch.Tensor:
import aiter as rocm_aiter
if x.dim() > 2:
x_original_shape = x.shape
x = x.reshape(-1, x_original_shape[-1])
x = rocm_aiter.rms_norm(x, weight, variance_epsilon)
return x.reshape(x_original_shape)
return rocm_aiter.rms_norm(x, weight, variance_epsilon)
def rocm_aiter_rmsnorm2d_fwd_with_add_impl(
x: torch.Tensor,
residual: torch.Tensor,
weight: torch.Tensor,
variance_epsilon: float,
) -> tuple[torch.Tensor, torch.Tensor]:
import aiter as rocm_aiter
residual_out = torch.empty_like(residual)
output = torch.empty_like(x)
rocm_aiter.rmsnorm2d_fwd_with_add(
output, # output
x, # input
residual, # residual input
residual_out, # residual output
weight,
variance_epsilon,
)
return output, residual_out
def rocm_aiter_rms_norm_fake(
x: torch.Tensor, weight: torch.Tensor, variance_epsilon: float
) -> torch.Tensor:
return torch.empty_like(x)
def rocm_aiter_rmsnorm2d_fwd_with_add_fake(
x: torch.Tensor,
residual: torch.Tensor,
weight: torch.Tensor,
variance_epsilon: float,
) -> tuple[torch.Tensor, torch.Tensor]:
return torch.empty_like(x), torch.empty_like(residual)
if current_platform.is_rocm():
direct_register_custom_op(
op_name="rocm_aiter_rms_norm",
op_func=rocm_aiter_rms_norm_impl,
fake_impl=rocm_aiter_rms_norm_fake,
)
direct_register_custom_op(
op_name="rocm_aiter_rmsnorm2d_fwd_with_add",
op_func=rocm_aiter_rmsnorm2d_fwd_with_add_impl,
fake_impl=rocm_aiter_rmsnorm2d_fwd_with_add_fake,
)
def dispatch_rocm_rmsnorm_func(with_fused_add: bool, dtype: torch.dtype):
use_aiter = is_rocm_aiter_rmsnorm_enabled() and dtype in [
torch.float16,
torch.bfloat16,
]
if use_aiter and with_fused_add:
return torch.ops.vllm.rocm_aiter_rmsnorm2d_fwd_with_add
if use_aiter:
return torch.ops.vllm.rocm_aiter_rms_norm
# fall back to CUDA implementation
if with_fused_add:
return fused_add_rms_norm
return rms_norm
@CustomOp.register("rms_norm")
class RMSNorm(CustomOp):
"""Root mean square normalization.
Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight.
Refer to https://arxiv.org/abs/1910.07467
"""
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
var_hidden_size: int | None = None,
has_weight: bool = True,
dtype: torch.dtype | None = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.variance_epsilon = eps
self.variance_size_override = (
None if var_hidden_size == hidden_size else var_hidden_size
)
weight_dtype = dtype or torch.get_default_dtype()
self.has_weight = has_weight
self.weight = torch.ones(hidden_size, dtype=weight_dtype)
if self.has_weight:
self.weight = nn.Parameter(self.weight)
if current_platform.is_rocm():
self.rocm_norm_func = dispatch_rocm_rmsnorm_func(
with_fused_add=False, dtype=weight_dtype
)
self.rocm_norm_func_with_add = dispatch_rocm_rmsnorm_func(
with_fused_add=True, dtype=weight_dtype
)
@staticmethod
def forward_static(
x: torch.Tensor,
variance_epsilon: float,
hidden_size: int,
orig_dtype: torch.dtype,
weight: torch.Tensor | None = None,
residual: torch.Tensor | None = None,
variance_size_override: int | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
"""PyTorch-native implementation equivalent to forward()."""
x = x.to(torch.float32)
if residual is not None:
# residual promoted f16->f32 automatically,
# otherwise Inductor eliminates the casts to and from f16,
# increasing memory usage (and complicating pattern matching)
x = x + residual
residual = x.to(orig_dtype)
if x.shape[-1] != hidden_size:
raise ValueError(
f"Expected hidden_size to be {hidden_size}, but found: {x.shape[-1]}"
)
if variance_size_override is None:
x_var = x
else:
if hidden_size < variance_size_override:
raise ValueError(
"Expected hidden_size to be at least "
f"{variance_size_override}, but found: {hidden_size}"
)
x_var = x[:, :, :variance_size_override]
variance = x_var.pow(2).mean(dim=-1, keepdim=True)
x = x * torch.rsqrt(variance + variance_epsilon)
x = x.to(orig_dtype)
if weight is not None:
x = x * weight
if residual is None:
return x
else:
return x, residual
def forward_native(
self,
x: torch.Tensor,
residual: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
"""PyTorch-native implementation equivalent to forward()."""
return self.forward_static(
x,
self.variance_epsilon,
self.hidden_size,
x.dtype,
self.weight.data if self.has_weight else None,
residual,
self.variance_size_override,
)
def forward_cuda(
self,
x: torch.Tensor,
residual: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
if self.variance_size_override is not None:
return self.forward_native(x, residual)
add_residual = residual is not None
if add_residual:
return fused_add_rms_norm(
x, residual, self.weight.data, self.variance_epsilon
)
else:
return rms_norm(x, self.weight.data, self.variance_epsilon)
def forward_hip(
self,
x: torch.Tensor,
residual: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
if self.variance_size_override is not None:
return self.forward_native(x, residual)
add_residual = residual is not None
if add_residual:
return self.rocm_norm_func_with_add(
x, residual, self.weight.data, self.variance_epsilon
)
else:
return self.rocm_norm_func(x, self.weight.data, self.variance_epsilon)
def forward_xpu(
self,
x: torch.Tensor,
residual: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
if self.variance_size_override is not None:
return self.forward_native(x, residual)
from vllm._ipex_ops import ipex_ops as ops
if residual is not None:
ops.fused_add_rms_norm(
x,
residual,
self.weight.data,
self.variance_epsilon,
)
return x, residual
return ops.rms_norm(
x,
self.weight.data,
self.variance_epsilon,
)
def extra_repr(self) -> str:
s = f"hidden_size={self.weight.data.size(0)}"
s += f", eps={self.variance_epsilon}"
return s
@CustomOp.register("gemma_rms_norm")
class GemmaRMSNorm(CustomOp):
"""RMS normalization for Gemma.
Two differences from the above RMSNorm:
1. x * (1 + w) instead of x * w.
2. (x * w).to(orig_dtype) instead of x.to(orig_dtype) * w.
"""
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
) -> None:
super().__init__()
self.weight = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
@staticmethod
def forward_static(
weight: torch.Tensor,
variance_epsilon: float,
x: torch.Tensor,
residual: torch.Tensor | None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
"""PyTorch-native implementation equivalent to forward()."""
orig_dtype = x.dtype
if residual is not None:
x = (
x.float() + residual.float()
if orig_dtype == torch.float16
else x + residual
)
residual = x
x = x.float()
variance = x.pow(2).mean(dim=-1, keepdim=True)
x = x * torch.rsqrt(variance + variance_epsilon)
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
x = x * (1.0 + weight.float())
x = x.to(orig_dtype)
return x if residual is None else (x, residual)
def forward_native(
self,
x: torch.Tensor,
residual: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
"""PyTorch-native implementation equivalent to forward()."""
return self.forward_static(self.weight.data, self.variance_epsilon, x, residual)
def forward_cuda(
self,
x: torch.Tensor,
residual: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
if torch.compiler.is_compiling():
return self.forward_native(x, residual)
if not getattr(self, "_is_compiled", False):
self.forward_static = torch.compile( # type: ignore
self.forward_static
)
self._is_compiled = True
return self.forward_native(x, residual)
@CustomOp.register("rms_norm_gated")
class RMSNormGated(CustomOp):
"""RMS Normalization with optional gating.
This is a native PyTorch implementation that supports:
- Standard RMS normalization
- Group RMS normalization
- Optional gating with SiLU activation
"""
def __init__(
self,
hidden_size: int,
eps: float = 1e-5,
group_size: int | None = None,
norm_before_gate: bool = False,
device: torch.device | None = None,
dtype: torch.dtype | None = None,
):
"""Initialize RMSNormGated.
Args:
hidden_size: Size of the hidden dimension
eps: Epsilon for numerical stability
group_size: If not None, do GroupNorm with each group
having group_size elements.
group_size=None is equivalent to group_size=hidden_size
(i.e. there's only 1 group).
norm_before_gate: If True and z is provided: out = norm(x) * silu(z)
If False and z is provided: out = norm(x * silu(z))
device: Device to create parameters on
dtype: Data type for parameters
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter("bias", None)
self.group_size = group_size
self.norm_before_gate = norm_before_gate
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
def forward_native(
self, x: torch.Tensor, z: torch.Tensor | None = None
) -> torch.Tensor:
"""
Native PyTorch implementation of RMS normalization with gating.
Args:
x: Input tensor
z: Optional gating tensor
Returns:
Normalized (and optionally gated) tensor
If z is not None:
- norm_before_gate=True: out = norm(x) * silu(z)
- norm_before_gate=False: out = norm(x * silu(z))
"""
# Apply gating before normalization if needed
if z is not None and not self.norm_before_gate:
x = x * F.silu(z)
# RMS Normalization
if self.group_size is None:
# Standard RMS norm across the last dimension
variance = x.pow(2).mean(dim=-1, keepdim=True)
x_normed = x * torch.rsqrt(variance + self.eps)
out = x_normed * self.weight
else:
# Group RMS norm
from einops import rearrange
x_group = rearrange(x, "... (g d) -> ... g d", d=self.group_size)
variance = x_group.pow(2).mean(dim=-1, keepdim=True)
x_normed = x_group * torch.rsqrt(variance + self.eps)
out = rearrange(x_normed, "... g d -> ... (g d)") * self.weight
# Apply gating after normalization if needed
if z is not None and self.norm_before_gate:
out = out * F.silu(z)
return out
def forward_cuda(
self, x: torch.Tensor, z: torch.Tensor | None = None
) -> torch.Tensor:
return rmsnorm_fn(
x,
self.weight,
self.bias,
z=z,
eps=self.eps,
group_size=self.group_size,
norm_before_gate=self.norm_before_gate,
)
class LayerNorm(nn.Module):
"""
Layer Normalization.
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
def forward(self, x: torch.Tensor):
return F.layer_norm(
x.float(), (self.dim,), self.weight, self.bias, self.eps
).type_as(x)