mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 21:25:33 +08:00
490 lines
15 KiB
Python
490 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Custom normalization layers."""
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import vllm.envs as envs
|
|
from vllm.model_executor.custom_op import CustomOp
|
|
from vllm.model_executor.layers.batch_invariant import (
|
|
rms_norm_batch_invariant,
|
|
vllm_is_batch_invariant,
|
|
)
|
|
from vllm.model_executor.layers.fla.ops.layernorm_guard import rmsnorm_fn
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils.torch_utils import direct_register_custom_op
|
|
|
|
|
|
def is_rocm_aiter_rmsnorm_enabled() -> bool:
|
|
return envs.VLLM_ROCM_USE_AITER_RMSNORM and envs.VLLM_ROCM_USE_AITER
|
|
|
|
|
|
def rms_norm(
|
|
x: torch.Tensor, weight: torch.Tensor, variance_epsilon: float
|
|
) -> torch.Tensor:
|
|
from vllm import _custom_ops as ops
|
|
|
|
if vllm_is_batch_invariant():
|
|
return rms_norm_batch_invariant(x, weight, variance_epsilon)
|
|
out = torch.empty_like(x)
|
|
ops.rms_norm(
|
|
out,
|
|
x,
|
|
weight,
|
|
variance_epsilon,
|
|
)
|
|
return out
|
|
|
|
|
|
def fused_add_rms_norm(
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
variance_epsilon: float,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
from vllm import _custom_ops as ops
|
|
|
|
if vllm_is_batch_invariant():
|
|
return rms_norm_batch_invariant(
|
|
x + residual, weight, variance_epsilon
|
|
), x + residual
|
|
ops.fused_add_rms_norm(
|
|
x,
|
|
residual,
|
|
weight,
|
|
variance_epsilon,
|
|
)
|
|
return x, residual
|
|
|
|
|
|
def rocm_aiter_rms_norm_impl(
|
|
x: torch.Tensor, weight: torch.Tensor, variance_epsilon: float
|
|
) -> torch.Tensor:
|
|
import aiter as rocm_aiter
|
|
|
|
if x.dim() > 2:
|
|
x_original_shape = x.shape
|
|
x = x.reshape(-1, x_original_shape[-1])
|
|
x = rocm_aiter.rms_norm(x, weight, variance_epsilon)
|
|
return x.reshape(x_original_shape)
|
|
|
|
return rocm_aiter.rms_norm(x, weight, variance_epsilon)
|
|
|
|
|
|
def rocm_aiter_rmsnorm2d_fwd_with_add_impl(
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
variance_epsilon: float,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
import aiter as rocm_aiter
|
|
|
|
residual_out = torch.empty_like(residual)
|
|
output = torch.empty_like(x)
|
|
rocm_aiter.rmsnorm2d_fwd_with_add(
|
|
output, # output
|
|
x, # input
|
|
residual, # residual input
|
|
residual_out, # residual output
|
|
weight,
|
|
variance_epsilon,
|
|
)
|
|
return output, residual_out
|
|
|
|
|
|
def rocm_aiter_rms_norm_fake(
|
|
x: torch.Tensor, weight: torch.Tensor, variance_epsilon: float
|
|
) -> torch.Tensor:
|
|
return torch.empty_like(x)
|
|
|
|
|
|
def rocm_aiter_rmsnorm2d_fwd_with_add_fake(
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor,
|
|
weight: torch.Tensor,
|
|
variance_epsilon: float,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
return torch.empty_like(x), torch.empty_like(residual)
|
|
|
|
|
|
if current_platform.is_rocm():
|
|
direct_register_custom_op(
|
|
op_name="rocm_aiter_rms_norm",
|
|
op_func=rocm_aiter_rms_norm_impl,
|
|
fake_impl=rocm_aiter_rms_norm_fake,
|
|
)
|
|
|
|
direct_register_custom_op(
|
|
op_name="rocm_aiter_rmsnorm2d_fwd_with_add",
|
|
op_func=rocm_aiter_rmsnorm2d_fwd_with_add_impl,
|
|
fake_impl=rocm_aiter_rmsnorm2d_fwd_with_add_fake,
|
|
)
|
|
|
|
|
|
def dispatch_rocm_rmsnorm_func(with_fused_add: bool, dtype: torch.dtype):
|
|
use_aiter = is_rocm_aiter_rmsnorm_enabled() and dtype in [
|
|
torch.float16,
|
|
torch.bfloat16,
|
|
]
|
|
|
|
if use_aiter and with_fused_add:
|
|
return torch.ops.vllm.rocm_aiter_rmsnorm2d_fwd_with_add
|
|
if use_aiter:
|
|
return torch.ops.vllm.rocm_aiter_rms_norm
|
|
|
|
# fall back to CUDA implementation
|
|
if with_fused_add:
|
|
return fused_add_rms_norm
|
|
return rms_norm
|
|
|
|
|
|
@CustomOp.register("rms_norm")
|
|
class RMSNorm(CustomOp):
|
|
"""Root mean square normalization.
|
|
|
|
Computes x -> w * x / sqrt(E[x^2] + eps) where w is the learned weight.
|
|
Refer to https://arxiv.org/abs/1910.07467
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float = 1e-6,
|
|
var_hidden_size: int | None = None,
|
|
has_weight: bool = True,
|
|
dtype: torch.dtype | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
self.variance_epsilon = eps
|
|
self.variance_size_override = (
|
|
None if var_hidden_size == hidden_size else var_hidden_size
|
|
)
|
|
weight_dtype = dtype or torch.get_default_dtype()
|
|
self.has_weight = has_weight
|
|
self.weight = torch.ones(hidden_size, dtype=weight_dtype)
|
|
if self.has_weight:
|
|
self.weight = nn.Parameter(self.weight)
|
|
|
|
if current_platform.is_rocm():
|
|
self.rocm_norm_func = dispatch_rocm_rmsnorm_func(
|
|
with_fused_add=False, dtype=weight_dtype
|
|
)
|
|
self.rocm_norm_func_with_add = dispatch_rocm_rmsnorm_func(
|
|
with_fused_add=True, dtype=weight_dtype
|
|
)
|
|
|
|
@staticmethod
|
|
def forward_static(
|
|
x: torch.Tensor,
|
|
variance_epsilon: float,
|
|
hidden_size: int,
|
|
orig_dtype: torch.dtype,
|
|
weight: torch.Tensor | None = None,
|
|
residual: torch.Tensor | None = None,
|
|
variance_size_override: int | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
x = x.to(torch.float32)
|
|
if residual is not None:
|
|
# residual promoted f16->f32 automatically,
|
|
# otherwise Inductor eliminates the casts to and from f16,
|
|
# increasing memory usage (and complicating pattern matching)
|
|
x = x + residual
|
|
residual = x.to(orig_dtype)
|
|
|
|
if x.shape[-1] != hidden_size:
|
|
raise ValueError(
|
|
f"Expected hidden_size to be {hidden_size}, but found: {x.shape[-1]}"
|
|
)
|
|
|
|
if variance_size_override is None:
|
|
x_var = x
|
|
else:
|
|
if hidden_size < variance_size_override:
|
|
raise ValueError(
|
|
"Expected hidden_size to be at least "
|
|
f"{variance_size_override}, but found: {hidden_size}"
|
|
)
|
|
|
|
x_var = x[:, :, :variance_size_override]
|
|
|
|
variance = x_var.pow(2).mean(dim=-1, keepdim=True)
|
|
|
|
x = x * torch.rsqrt(variance + variance_epsilon)
|
|
x = x.to(orig_dtype)
|
|
if weight is not None:
|
|
x = x * weight
|
|
if residual is None:
|
|
return x
|
|
else:
|
|
return x, residual
|
|
|
|
def forward_native(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
|
|
return self.forward_static(
|
|
x,
|
|
self.variance_epsilon,
|
|
self.hidden_size,
|
|
x.dtype,
|
|
self.weight.data if self.has_weight else None,
|
|
residual,
|
|
self.variance_size_override,
|
|
)
|
|
|
|
def forward_cuda(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
if self.variance_size_override is not None:
|
|
return self.forward_native(x, residual)
|
|
|
|
add_residual = residual is not None
|
|
if add_residual:
|
|
return fused_add_rms_norm(
|
|
x, residual, self.weight.data, self.variance_epsilon
|
|
)
|
|
else:
|
|
return rms_norm(x, self.weight.data, self.variance_epsilon)
|
|
|
|
def forward_hip(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
if self.variance_size_override is not None:
|
|
return self.forward_native(x, residual)
|
|
|
|
add_residual = residual is not None
|
|
if add_residual:
|
|
return self.rocm_norm_func_with_add(
|
|
x, residual, self.weight.data, self.variance_epsilon
|
|
)
|
|
else:
|
|
return self.rocm_norm_func(x, self.weight.data, self.variance_epsilon)
|
|
|
|
def forward_xpu(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
if self.variance_size_override is not None:
|
|
return self.forward_native(x, residual)
|
|
|
|
from vllm._ipex_ops import ipex_ops as ops
|
|
|
|
if residual is not None:
|
|
ops.fused_add_rms_norm(
|
|
x,
|
|
residual,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
return x, residual
|
|
return ops.rms_norm(
|
|
x,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
|
|
def extra_repr(self) -> str:
|
|
s = f"hidden_size={self.weight.data.size(0)}"
|
|
s += f", eps={self.variance_epsilon}"
|
|
return s
|
|
|
|
|
|
@CustomOp.register("gemma_rms_norm")
|
|
class GemmaRMSNorm(CustomOp):
|
|
"""RMS normalization for Gemma.
|
|
|
|
Two differences from the above RMSNorm:
|
|
1. x * (1 + w) instead of x * w.
|
|
2. (x * w).to(orig_dtype) instead of x.to(orig_dtype) * w.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float = 1e-6,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.zeros(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
@staticmethod
|
|
def forward_static(
|
|
weight: torch.Tensor,
|
|
variance_epsilon: float,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
orig_dtype = x.dtype
|
|
if residual is not None:
|
|
x = (
|
|
x.float() + residual.float()
|
|
if orig_dtype == torch.float16
|
|
else x + residual
|
|
)
|
|
residual = x
|
|
|
|
x = x.float()
|
|
variance = x.pow(2).mean(dim=-1, keepdim=True)
|
|
x = x * torch.rsqrt(variance + variance_epsilon)
|
|
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
|
|
# See https://github.com/huggingface/transformers/pull/29402
|
|
x = x * (1.0 + weight.float())
|
|
x = x.to(orig_dtype)
|
|
return x if residual is None else (x, residual)
|
|
|
|
def forward_native(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
"""PyTorch-native implementation equivalent to forward()."""
|
|
return self.forward_static(self.weight.data, self.variance_epsilon, x, residual)
|
|
|
|
def forward_cuda(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor | None = None,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
if torch.compiler.is_compiling():
|
|
return self.forward_native(x, residual)
|
|
|
|
if not getattr(self, "_is_compiled", False):
|
|
self.forward_static = torch.compile( # type: ignore
|
|
self.forward_static
|
|
)
|
|
self._is_compiled = True
|
|
return self.forward_native(x, residual)
|
|
|
|
|
|
@CustomOp.register("rms_norm_gated")
|
|
class RMSNormGated(CustomOp):
|
|
"""RMS Normalization with optional gating.
|
|
|
|
This is a native PyTorch implementation that supports:
|
|
- Standard RMS normalization
|
|
- Group RMS normalization
|
|
- Optional gating with SiLU activation
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float = 1e-5,
|
|
group_size: int | None = None,
|
|
norm_before_gate: bool = False,
|
|
device: torch.device | None = None,
|
|
dtype: torch.dtype | None = None,
|
|
):
|
|
"""Initialize RMSNormGated.
|
|
|
|
Args:
|
|
hidden_size: Size of the hidden dimension
|
|
eps: Epsilon for numerical stability
|
|
group_size: If not None, do GroupNorm with each group
|
|
having group_size elements.
|
|
group_size=None is equivalent to group_size=hidden_size
|
|
(i.e. there's only 1 group).
|
|
norm_before_gate: If True and z is provided: out = norm(x) * silu(z)
|
|
If False and z is provided: out = norm(x * silu(z))
|
|
device: Device to create parameters on
|
|
dtype: Data type for parameters
|
|
"""
|
|
factory_kwargs = {"device": device, "dtype": dtype}
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
|
self.register_parameter("bias", None)
|
|
self.group_size = group_size
|
|
self.norm_before_gate = norm_before_gate
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
torch.nn.init.ones_(self.weight)
|
|
|
|
def forward_native(
|
|
self, x: torch.Tensor, z: torch.Tensor | None = None
|
|
) -> torch.Tensor:
|
|
"""
|
|
Native PyTorch implementation of RMS normalization with gating.
|
|
|
|
Args:
|
|
x: Input tensor
|
|
z: Optional gating tensor
|
|
|
|
Returns:
|
|
Normalized (and optionally gated) tensor
|
|
|
|
If z is not None:
|
|
- norm_before_gate=True: out = norm(x) * silu(z)
|
|
- norm_before_gate=False: out = norm(x * silu(z))
|
|
"""
|
|
# Apply gating before normalization if needed
|
|
if z is not None and not self.norm_before_gate:
|
|
x = x * F.silu(z)
|
|
|
|
# RMS Normalization
|
|
if self.group_size is None:
|
|
# Standard RMS norm across the last dimension
|
|
variance = x.pow(2).mean(dim=-1, keepdim=True)
|
|
x_normed = x * torch.rsqrt(variance + self.eps)
|
|
out = x_normed * self.weight
|
|
else:
|
|
# Group RMS norm
|
|
from einops import rearrange
|
|
|
|
x_group = rearrange(x, "... (g d) -> ... g d", d=self.group_size)
|
|
variance = x_group.pow(2).mean(dim=-1, keepdim=True)
|
|
x_normed = x_group * torch.rsqrt(variance + self.eps)
|
|
out = rearrange(x_normed, "... g d -> ... (g d)") * self.weight
|
|
|
|
# Apply gating after normalization if needed
|
|
if z is not None and self.norm_before_gate:
|
|
out = out * F.silu(z)
|
|
|
|
return out
|
|
|
|
def forward_cuda(
|
|
self, x: torch.Tensor, z: torch.Tensor | None = None
|
|
) -> torch.Tensor:
|
|
return rmsnorm_fn(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
z=z,
|
|
eps=self.eps,
|
|
group_size=self.group_size,
|
|
norm_before_gate=self.norm_before_gate,
|
|
)
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
"""
|
|
Layer Normalization.
|
|
"""
|
|
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
|
|
self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return F.layer_norm(
|
|
x.float(), (self.dim,), self.weight, self.bias, self.eps
|
|
).type_as(x)
|