[ Misc ] fbgemm checkpoints (#6559)

This commit is contained in:
Robert Shaw 2024-07-20 12:36:57 -04:00 committed by GitHub
parent 9042d68362
commit 683e3cb9c4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 234 additions and 47 deletions

View File

@ -4,8 +4,8 @@ tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.769
value: 0.752
- name: "exact_match,flexible-extract"
value: 0.769
value: 0.754
limit: 1000
num_fewshot: 5

View File

@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.753
- name: "exact_match,flexible-extract"
value: 0.753
limit: 1000
num_fewshot: 5

View File

@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
done
lm_eval --model vllm \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
--batch_size $BATCH_SIZE

View File

@ -315,6 +315,8 @@ def scaled_fp8_quant(
Args:
input: The input tensor to be quantized to FP8
scale: Optional scaling factor for the FP8 quantization
scale_ub: Optional upper bound for scaling factor in dynamic
per token case
batch_dim_padding: If specified, pad the first dimension
of the output to at least this value.
use_per_token_if_dynamic: Whether to do per_tensor or per_token

View File

@ -34,6 +34,7 @@ class Attention(nn.Module):
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
blocksparse_params: Optional[Dict[str, Any]] = None,
prefix: str = "",
) -> None:
super().__init__()
if cache_config is not None:
@ -56,7 +57,7 @@ class Attention(nn.Module):
self._k_scale = 1.0
self._v_scale = 1.0
quant_method = quant_config.get_quant_method(
self) if quant_config else None
self, prefix=prefix) if quant_config else None
if quant_method is not None:
assert isinstance(quant_method, Fp8KVCacheMethod)
# TODO (mgoin): kv cache dtype should be specified in the FP8

View File

@ -251,7 +251,7 @@ class ModelConfig:
f"supported in ROCm.")
if (self.quantization
not in ("fp8", "marlin", "gptq_marlin_24", "gptq_marlin",
"compressed_tensors")):
"fbgemm_fp8", "compressed_tensors")):
logger.warning(
"%s quantization is not fully "
"optimized yet. The speed can be slower than "

View File

@ -182,7 +182,7 @@ class FusedMoE(torch.nn.Module):
self.quant_method: Optional[QuantizeMethodBase] = (
UnquantizedFusedMoEMethod())
else:
self.quant_method = quant_config.get_quant_method(self)
self.quant_method = quant_config.get_quant_method(self, prefix)
assert self.quant_method is not None
self.quant_method.create_weights(

View File

@ -141,6 +141,7 @@ class LinearBase(torch.nn.Module):
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
@ -155,7 +156,8 @@ class LinearBase(torch.nn.Module):
self.quant_method: Optional[
QuantizeMethodBase] = UnquantizedLinearMethod()
else:
self.quant_method = quant_config.get_quant_method(self)
self.quant_method = quant_config.get_quant_method(self,
prefix=prefix)
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
@ -182,9 +184,13 @@ class ReplicatedLinear(LinearBase):
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: Optional[str] = None):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
quant_config)
prefix: str = ""):
super().__init__(input_size,
output_size,
skip_bias_add,
params_dtype,
quant_config,
prefix=prefix)
# All the linear layer supports quant method.
assert self.quant_method is not None
@ -258,9 +264,9 @@ class ColumnParallelLinear(LinearBase):
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
output_sizes: Optional[List[int]] = None,
prefix: Optional[str] = None):
prefix: str = ""):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
quant_config)
quant_config, prefix)
self.gather_output = gather_output
@ -370,7 +376,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: Optional[str] = None):
prefix: str = ""):
self.output_sizes = output_sizes
tp_size = get_tensor_model_parallel_world_size()
assert all(output_size % tp_size == 0 for output_size in output_sizes)
@ -514,7 +520,7 @@ class QKVParallelLinear(ColumnParallelLinear):
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: Optional[str] = None):
prefix: str = ""):
self.hidden_size = hidden_size
self.head_size = head_size
self.total_num_heads = total_num_heads
@ -707,9 +713,9 @@ class RowParallelLinear(LinearBase):
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: Optional[str] = None):
prefix: str = ""):
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
quant_config)
quant_config, prefix)
self.input_is_parallel = input_is_parallel
self.reduce_results = reduce_results

View File

@ -10,6 +10,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tenso
CompressedTensorsConfig)
from vllm.model_executor.layers.quantization.deepspeedfp import (
DeepSpeedFPConfig)
from vllm.model_executor.layers.quantization.fbgemm_fp8 import FBGEMMFp8Config
from vllm.model_executor.layers.quantization.fp8 import Fp8Config
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
from vllm.model_executor.layers.quantization.gptq_marlin import (
@ -24,6 +25,7 @@ QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
"awq": AWQConfig,
"deepspeedfp": DeepSpeedFPConfig,
"fp8": Fp8Config,
"fbgemm_fp8": FBGEMMFp8Config,
# The order of gptq methods is important for config.py iteration over
# override_quantization_method(..)
"marlin": MarlinConfig,

View File

@ -207,8 +207,8 @@ class AQLMConfig(QuantizationConfig):
return cls(in_group_size, nbits_per_codebook, num_code_books,
out_group_size)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["AQLMLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["AQLMLinearMethod"]:
if isinstance(layer, LinearBase):
return AQLMLinearMethod(self)
return None

View File

@ -63,8 +63,8 @@ class AWQConfig(QuantizationConfig):
zero_point = cls.get_from_keys(config, ["zero_point"])
return cls(weight_bits, group_size, zero_point)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["AWQLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["AWQLinearMethod"]:
if isinstance(layer, LinearBase):
return AWQLinearMethod(self)
return None

View File

@ -97,12 +97,13 @@ class QuantizationConfig(ABC):
return default
@abstractmethod
def get_quant_method(
self, layer: torch.nn.Module) -> Optional[QuantizeMethodBase]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional[QuantizeMethodBase]:
"""Get the quantize method to use for the quantized layer.
Args:
layer: The layer for the quant method.
prefix: The full name of the layer in the state dict
Returns:
The quantize method. None if the given layer doesn't support quant
method.

View File

@ -60,9 +60,8 @@ class BitsAndBytesConfig(QuantizationConfig):
target_modules = cls.get_from_keys(config, ["target_modules"])
return cls(adapter_name, target_modules)
def get_quant_method(
self,
layer: torch.nn.Module) -> Optional["BitsAndBytesLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["BitsAndBytesLinearMethod"]:
if isinstance(layer, LinearBase):
return BitsAndBytesLinearMethod(self)
return None

View File

@ -44,8 +44,12 @@ class CompressedTensorsConfig(QuantizationConfig):
def get_name(self) -> str:
return "compressed_tensors"
# TODO (@robertgshaw2-neuralmagic): do layer skipping though here
# rather than though create_weights to match other methods
def get_quant_method(
self, layer: torch.nn.Module
self,
layer: torch.nn.Module,
prefix: str,
) -> Optional["CompressedTensorsLinearMethod"]:
if isinstance(layer, LinearBase):
return CompressedTensorsLinearMethod(self)

View File

@ -69,9 +69,8 @@ class DeepSpeedFPConfig(QuantizationConfig):
"quantize_config.json",
]
def get_quant_method(
self,
layer: torch.nn.Module) -> Optional["DeepSpeedFPLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["DeepSpeedFPLinearMethod"]:
if isinstance(layer, LinearBase):
return DeepSpeedFPLinearMethod(self)
return None

View File

@ -0,0 +1,158 @@
from typing import Any, Dict, List, Optional
import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
apply_fp8_linear, create_per_channel_scale_param)
from vllm.model_executor.utils import set_weight_attrs
logger = init_logger(__name__)
# Note: this is a hack. We should update each model to register the
# stacked params and get it from there instead in a future PR.
# fused_name: List[shard_name]
_FUSED_LAYER_NAME_MAPPING = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"]
}
class FBGEMMFp8Config(QuantizationConfig):
"""Config class for FBGEMM Fp8."""
def __init__(self, ignore_list: List[str], input_scale_ub: float):
self.ignore_list = ignore_list
self.input_scale_ub = input_scale_ub
@classmethod
def get_name(cls) -> str:
return "fbgemm_fp8"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16, torch.float16]
@classmethod
def get_min_capability(cls) -> int:
return 89
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "FBGEMMFp8Config":
ignore_list = cls.get_from_keys(config, ["modules_to_not_convert"])
input_scale_ub = cls.get_from_keys(config, ["activation_scale_ub"])
return cls(ignore_list=ignore_list, input_scale_ub=input_scale_ub)
def _is_layer_skipped(self, prefix: str) -> bool:
# prefix: model.layers.0.self_attn.q_proj
# proj_name: q_proj
proj_name = prefix.split(".")[-1]
if proj_name in _FUSED_LAYER_NAME_MAPPING:
shard_prefixes = [
prefix.replace(proj_name, shard_proj_name)
for shard_proj_name in _FUSED_LAYER_NAME_MAPPING[proj_name]
]
is_skipped = None
for shard_prefix in shard_prefixes:
is_shard_skipped = shard_prefix in self.ignore_list
if is_skipped is None:
is_skipped = is_shard_skipped
elif is_shard_skipped != is_skipped:
raise ValueError(
f"Detected some but not all shards of {prefix} "
"are quantized. All shards of fused layers "
"to have the same precision.")
else:
is_skipped = prefix in self.ignore_list
assert is_skipped is not None
return is_skipped
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
if self._is_layer_skipped(prefix):
return UnquantizedLinearMethod()
return FBGEMMFp8LinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class FBGEMMFp8LinearMethod(LinearMethodBase):
def __init__(self, quant_config: FBGEMMFp8Config):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del input_size, output_size
output_size_per_partition = sum(output_partition_sizes)
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
layer.orig_dtype = params_dtype
# WEIGHT
weight = Parameter(torch.empty(output_size_per_partition,
input_size_per_partition,
dtype=torch.float8_e4m3fn),
requires_grad=False)
layer.register_parameter("weight", weight)
set_weight_attrs(weight, {
"input_dim": 1,
"output_dim": 0,
**extra_weight_attrs,
})
# WEIGHT SCALE
weight_scale = create_per_channel_scale_param(output_partition_sizes,
**extra_weight_attrs)
layer.register_parameter("weight_scale", weight_scale)
# INPUT SCALE UPPER BOUND
input_scale_ub = torch.nn.Parameter(torch.tensor(
(self.quant_config.input_scale_ub), dtype=torch.float32),
requires_grad=False)
layer.input_scale_ub = input_scale_ub
def process_weights_after_loading(self, layer: Module) -> None:
weight = layer.weight
layer.weight = Parameter(weight.t(), requires_grad=False)
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
return apply_fp8_linear(input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
input_scale=None,
input_scale_ub=layer.input_scale_ub,
bias=bias,
cutlass_fp8_supported=True,
use_per_token_if_dynamic=True)

View File

@ -66,8 +66,8 @@ class Fp8Config(QuantizationConfig):
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
activation_scheme=activation_scheme)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):

View File

@ -69,8 +69,8 @@ class GPTQConfig(QuantizationConfig):
default=False)
return cls(weight_bits, group_size, desc_act, lm_head_quantized)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["GPTQLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["GPTQLinearMethod"]:
if (isinstance(layer, LinearBase) or
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
return GPTQLinearMethod(self)

View File

@ -94,9 +94,8 @@ class GPTQMarlinConfig(QuantizationConfig):
" faster inference")
return None
def get_quant_method(
self,
layer: torch.nn.Module) -> Optional["GPTQMarlinLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["GPTQMarlinLinearMethod"]:
if (isinstance(layer, LinearBase) or
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
return GPTQMarlinLinearMethod(self)

View File

@ -109,9 +109,8 @@ class GPTQMarlin24Config(QuantizationConfig):
return None
def get_quant_method(
self,
layer: torch.nn.Module) -> Optional["GPTQMarlin24LinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["GPTQMarlin24LinearMethod"]:
if isinstance(layer, LinearBase):
return GPTQMarlin24LinearMethod(self)
return None

View File

@ -100,8 +100,8 @@ class MarlinConfig(QuantizationConfig):
return None
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["MarlinLinearMethod"]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["MarlinLinearMethod"]:
if (isinstance(layer, LinearBase) or
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
return MarlinLinearMethod(self)

View File

@ -52,8 +52,8 @@ class SqueezeLLMConfig(QuantizationConfig):
weight_bits = cls.get_from_keys(config, ["wbits"])
return cls(weight_bits)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional[QuantizeMethodBase]:
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional[QuantizeMethodBase]:
if isinstance(layer, LinearBase):
return SqueezeLLMLinearMethod(self)
return None

View File

@ -105,6 +105,7 @@ def apply_fp8_linear(
weight: torch.Tensor,
weight_scale: torch.Tensor,
input_scale: torch.Tensor,
input_scale_ub: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
cutlass_fp8_supported: bool = True,
use_per_token_if_dynamic: bool = False,
@ -118,6 +119,7 @@ def apply_fp8_linear(
qinput, x_scale = ops.scaled_fp8_quant(
input,
input_scale,
scale_ub=input_scale_ub,
use_per_token_if_dynamic=use_per_token_if_dynamic)
# Fused GEMM_DQ

View File

@ -161,6 +161,7 @@ class VocabParallelEmbedding(torch.nn.Module):
org_num_embeddings: original vocabulary size (without LoRA).
padding_size: padding size for the vocabulary.
quant_config: quant config for the layer
prefix: full name of the layer in the state dict
""" # noqa: E501
def __init__(self,
@ -169,7 +170,8 @@ class VocabParallelEmbedding(torch.nn.Module):
params_dtype: Optional[torch.dtype] = None,
org_num_embeddings: Optional[int] = None,
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
quant_config: Optional[QuantizationConfig] = None):
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
# Keep the input dimensions.
@ -195,7 +197,7 @@ class VocabParallelEmbedding(torch.nn.Module):
linear_method = None
if quant_config is not None:
linear_method = quant_config.get_quant_method(self)
linear_method = quant_config.get_quant_method(self, prefix=prefix)
if linear_method is None:
linear_method = UnquantizedLinearMethod()
self.linear_method: QuantizeMethodBase = linear_method
@ -382,9 +384,11 @@ class ParallelLMHead(VocabParallelEmbedding):
params_dtype: Optional[torch.dtype] = None,
org_num_embeddings: Optional[int] = None,
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
quant_config: Optional[QuantizationConfig] = None):
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__(num_embeddings, embedding_dim, params_dtype,
org_num_embeddings, padding_size, quant_config)
org_num_embeddings, padding_size, quant_config,
prefix)
if bias:
self.bias = Parameter(
torch.empty(self.num_embeddings_per_partition,