mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 12:35:40 +08:00
[ Misc ] fbgemm checkpoints (#6559)
This commit is contained in:
parent
9042d68362
commit
683e3cb9c4
@ -4,8 +4,8 @@ tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.769
|
||||
value: 0.752
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.769
|
||||
value: 0.754
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
||||
|
||||
@ -0,0 +1,11 @@
|
||||
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform -b auto -l 1000 -f 5 -t 1
|
||||
model_name: "nm-testing/Meta-Llama-3-8B-Instruct-FBGEMM-nonuniform"
|
||||
tasks:
|
||||
- name: "gsm8k"
|
||||
metrics:
|
||||
- name: "exact_match,strict-match"
|
||||
value: 0.753
|
||||
- name: "exact_match,flexible-extract"
|
||||
value: 0.753
|
||||
limit: 1000
|
||||
num_fewshot: 5
|
||||
@ -46,6 +46,6 @@ while getopts "m:b:l:f:t:" OPT; do
|
||||
done
|
||||
|
||||
lm_eval --model vllm \
|
||||
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,add_bos_token=true,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
|
||||
--model_args pretrained=$MODEL,tensor_parallel_size=$TP_SIZE,distributed_executor_backend="ray",trust_remote_code=true,max_model_len=4096 \
|
||||
--tasks gsm8k --num_fewshot $FEWSHOT --limit $LIMIT \
|
||||
--batch_size $BATCH_SIZE
|
||||
|
||||
@ -315,6 +315,8 @@ def scaled_fp8_quant(
|
||||
Args:
|
||||
input: The input tensor to be quantized to FP8
|
||||
scale: Optional scaling factor for the FP8 quantization
|
||||
scale_ub: Optional upper bound for scaling factor in dynamic
|
||||
per token case
|
||||
batch_dim_padding: If specified, pad the first dimension
|
||||
of the output to at least this value.
|
||||
use_per_token_if_dynamic: Whether to do per_tensor or per_token
|
||||
|
||||
@ -34,6 +34,7 @@ class Attention(nn.Module):
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
blocksparse_params: Optional[Dict[str, Any]] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
if cache_config is not None:
|
||||
@ -56,7 +57,7 @@ class Attention(nn.Module):
|
||||
self._k_scale = 1.0
|
||||
self._v_scale = 1.0
|
||||
quant_method = quant_config.get_quant_method(
|
||||
self) if quant_config else None
|
||||
self, prefix=prefix) if quant_config else None
|
||||
if quant_method is not None:
|
||||
assert isinstance(quant_method, Fp8KVCacheMethod)
|
||||
# TODO (mgoin): kv cache dtype should be specified in the FP8
|
||||
|
||||
@ -251,7 +251,7 @@ class ModelConfig:
|
||||
f"supported in ROCm.")
|
||||
if (self.quantization
|
||||
not in ("fp8", "marlin", "gptq_marlin_24", "gptq_marlin",
|
||||
"compressed_tensors")):
|
||||
"fbgemm_fp8", "compressed_tensors")):
|
||||
logger.warning(
|
||||
"%s quantization is not fully "
|
||||
"optimized yet. The speed can be slower than "
|
||||
|
||||
@ -182,7 +182,7 @@ class FusedMoE(torch.nn.Module):
|
||||
self.quant_method: Optional[QuantizeMethodBase] = (
|
||||
UnquantizedFusedMoEMethod())
|
||||
else:
|
||||
self.quant_method = quant_config.get_quant_method(self)
|
||||
self.quant_method = quant_config.get_quant_method(self, prefix)
|
||||
assert self.quant_method is not None
|
||||
|
||||
self.quant_method.create_weights(
|
||||
|
||||
@ -141,6 +141,7 @@ class LinearBase(torch.nn.Module):
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@ -155,7 +156,8 @@ class LinearBase(torch.nn.Module):
|
||||
self.quant_method: Optional[
|
||||
QuantizeMethodBase] = UnquantizedLinearMethod()
|
||||
else:
|
||||
self.quant_method = quant_config.get_quant_method(self)
|
||||
self.quant_method = quant_config.get_quant_method(self,
|
||||
prefix=prefix)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError
|
||||
@ -182,9 +184,13 @@ class ReplicatedLinear(LinearBase):
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: Optional[str] = None):
|
||||
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
||||
quant_config)
|
||||
prefix: str = ""):
|
||||
super().__init__(input_size,
|
||||
output_size,
|
||||
skip_bias_add,
|
||||
params_dtype,
|
||||
quant_config,
|
||||
prefix=prefix)
|
||||
|
||||
# All the linear layer supports quant method.
|
||||
assert self.quant_method is not None
|
||||
@ -258,9 +264,9 @@ class ColumnParallelLinear(LinearBase):
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
output_sizes: Optional[List[int]] = None,
|
||||
prefix: Optional[str] = None):
|
||||
prefix: str = ""):
|
||||
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
||||
quant_config)
|
||||
quant_config, prefix)
|
||||
|
||||
self.gather_output = gather_output
|
||||
|
||||
@ -370,7 +376,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: Optional[str] = None):
|
||||
prefix: str = ""):
|
||||
self.output_sizes = output_sizes
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
assert all(output_size % tp_size == 0 for output_size in output_sizes)
|
||||
@ -514,7 +520,7 @@ class QKVParallelLinear(ColumnParallelLinear):
|
||||
skip_bias_add: bool = False,
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: Optional[str] = None):
|
||||
prefix: str = ""):
|
||||
self.hidden_size = hidden_size
|
||||
self.head_size = head_size
|
||||
self.total_num_heads = total_num_heads
|
||||
@ -707,9 +713,9 @@ class RowParallelLinear(LinearBase):
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
reduce_results: bool = True,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: Optional[str] = None):
|
||||
prefix: str = ""):
|
||||
super().__init__(input_size, output_size, skip_bias_add, params_dtype,
|
||||
quant_config)
|
||||
quant_config, prefix)
|
||||
|
||||
self.input_is_parallel = input_is_parallel
|
||||
self.reduce_results = reduce_results
|
||||
|
||||
@ -10,6 +10,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tenso
|
||||
CompressedTensorsConfig)
|
||||
from vllm.model_executor.layers.quantization.deepspeedfp import (
|
||||
DeepSpeedFPConfig)
|
||||
from vllm.model_executor.layers.quantization.fbgemm_fp8 import FBGEMMFp8Config
|
||||
from vllm.model_executor.layers.quantization.fp8 import Fp8Config
|
||||
from vllm.model_executor.layers.quantization.gptq import GPTQConfig
|
||||
from vllm.model_executor.layers.quantization.gptq_marlin import (
|
||||
@ -24,6 +25,7 @@ QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
|
||||
"awq": AWQConfig,
|
||||
"deepspeedfp": DeepSpeedFPConfig,
|
||||
"fp8": Fp8Config,
|
||||
"fbgemm_fp8": FBGEMMFp8Config,
|
||||
# The order of gptq methods is important for config.py iteration over
|
||||
# override_quantization_method(..)
|
||||
"marlin": MarlinConfig,
|
||||
|
||||
@ -207,8 +207,8 @@ class AQLMConfig(QuantizationConfig):
|
||||
return cls(in_group_size, nbits_per_codebook, num_code_books,
|
||||
out_group_size)
|
||||
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional["AQLMLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["AQLMLinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return AQLMLinearMethod(self)
|
||||
return None
|
||||
|
||||
@ -63,8 +63,8 @@ class AWQConfig(QuantizationConfig):
|
||||
zero_point = cls.get_from_keys(config, ["zero_point"])
|
||||
return cls(weight_bits, group_size, zero_point)
|
||||
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional["AWQLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["AWQLinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return AWQLinearMethod(self)
|
||||
return None
|
||||
|
||||
@ -97,12 +97,13 @@ class QuantizationConfig(ABC):
|
||||
return default
|
||||
|
||||
@abstractmethod
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional[QuantizeMethodBase]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional[QuantizeMethodBase]:
|
||||
"""Get the quantize method to use for the quantized layer.
|
||||
|
||||
Args:
|
||||
layer: The layer for the quant method.
|
||||
prefix: The full name of the layer in the state dict
|
||||
Returns:
|
||||
The quantize method. None if the given layer doesn't support quant
|
||||
method.
|
||||
|
||||
@ -60,9 +60,8 @@ class BitsAndBytesConfig(QuantizationConfig):
|
||||
target_modules = cls.get_from_keys(config, ["target_modules"])
|
||||
return cls(adapter_name, target_modules)
|
||||
|
||||
def get_quant_method(
|
||||
self,
|
||||
layer: torch.nn.Module) -> Optional["BitsAndBytesLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["BitsAndBytesLinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return BitsAndBytesLinearMethod(self)
|
||||
return None
|
||||
|
||||
@ -44,8 +44,12 @@ class CompressedTensorsConfig(QuantizationConfig):
|
||||
def get_name(self) -> str:
|
||||
return "compressed_tensors"
|
||||
|
||||
# TODO (@robertgshaw2-neuralmagic): do layer skipping though here
|
||||
# rather than though create_weights to match other methods
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
prefix: str,
|
||||
) -> Optional["CompressedTensorsLinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return CompressedTensorsLinearMethod(self)
|
||||
|
||||
@ -69,9 +69,8 @@ class DeepSpeedFPConfig(QuantizationConfig):
|
||||
"quantize_config.json",
|
||||
]
|
||||
|
||||
def get_quant_method(
|
||||
self,
|
||||
layer: torch.nn.Module) -> Optional["DeepSpeedFPLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["DeepSpeedFPLinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return DeepSpeedFPLinearMethod(self)
|
||||
return None
|
||||
|
||||
158
vllm/model_executor/layers/quantization/fbgemm_fp8.py
Normal file
158
vllm/model_executor/layers/quantization/fbgemm_fp8.py
Normal file
@ -0,0 +1,158 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
||||
UnquantizedLinearMethod)
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig, QuantizeMethodBase)
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
apply_fp8_linear, create_per_channel_scale_param)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
# Note: this is a hack. We should update each model to register the
|
||||
# stacked params and get it from there instead in a future PR.
|
||||
# fused_name: List[shard_name]
|
||||
_FUSED_LAYER_NAME_MAPPING = {
|
||||
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
||||
"gate_up_proj": ["gate_proj", "up_proj"]
|
||||
}
|
||||
|
||||
|
||||
class FBGEMMFp8Config(QuantizationConfig):
|
||||
"""Config class for FBGEMM Fp8."""
|
||||
|
||||
def __init__(self, ignore_list: List[str], input_scale_ub: float):
|
||||
self.ignore_list = ignore_list
|
||||
self.input_scale_ub = input_scale_ub
|
||||
|
||||
@classmethod
|
||||
def get_name(cls) -> str:
|
||||
return "fbgemm_fp8"
|
||||
|
||||
@classmethod
|
||||
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
||||
return [torch.bfloat16, torch.float16]
|
||||
|
||||
@classmethod
|
||||
def get_min_capability(cls) -> int:
|
||||
return 89
|
||||
|
||||
@classmethod
|
||||
def get_config_filenames(cls) -> List[str]:
|
||||
return []
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: Dict[str, Any]) -> "FBGEMMFp8Config":
|
||||
ignore_list = cls.get_from_keys(config, ["modules_to_not_convert"])
|
||||
input_scale_ub = cls.get_from_keys(config, ["activation_scale_ub"])
|
||||
return cls(ignore_list=ignore_list, input_scale_ub=input_scale_ub)
|
||||
|
||||
def _is_layer_skipped(self, prefix: str) -> bool:
|
||||
# prefix: model.layers.0.self_attn.q_proj
|
||||
# proj_name: q_proj
|
||||
proj_name = prefix.split(".")[-1]
|
||||
if proj_name in _FUSED_LAYER_NAME_MAPPING:
|
||||
shard_prefixes = [
|
||||
prefix.replace(proj_name, shard_proj_name)
|
||||
for shard_proj_name in _FUSED_LAYER_NAME_MAPPING[proj_name]
|
||||
]
|
||||
|
||||
is_skipped = None
|
||||
for shard_prefix in shard_prefixes:
|
||||
is_shard_skipped = shard_prefix in self.ignore_list
|
||||
|
||||
if is_skipped is None:
|
||||
is_skipped = is_shard_skipped
|
||||
elif is_shard_skipped != is_skipped:
|
||||
raise ValueError(
|
||||
f"Detected some but not all shards of {prefix} "
|
||||
"are quantized. All shards of fused layers "
|
||||
"to have the same precision.")
|
||||
else:
|
||||
is_skipped = prefix in self.ignore_list
|
||||
|
||||
assert is_skipped is not None
|
||||
return is_skipped
|
||||
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["QuantizeMethodBase"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
if self._is_layer_skipped(prefix):
|
||||
return UnquantizedLinearMethod()
|
||||
return FBGEMMFp8LinearMethod(self)
|
||||
return None
|
||||
|
||||
def get_scaled_act_names(self) -> List[str]:
|
||||
return []
|
||||
|
||||
|
||||
class FBGEMMFp8LinearMethod(LinearMethodBase):
|
||||
|
||||
def __init__(self, quant_config: FBGEMMFp8Config):
|
||||
self.quant_config = quant_config
|
||||
|
||||
def create_weights(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
input_size_per_partition: int,
|
||||
output_partition_sizes: List[int],
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
params_dtype: torch.dtype,
|
||||
**extra_weight_attrs,
|
||||
):
|
||||
del input_size, output_size
|
||||
output_size_per_partition = sum(output_partition_sizes)
|
||||
|
||||
layer.logical_widths = output_partition_sizes
|
||||
|
||||
layer.input_size_per_partition = input_size_per_partition
|
||||
layer.output_size_per_partition = output_size_per_partition
|
||||
layer.orig_dtype = params_dtype
|
||||
|
||||
# WEIGHT
|
||||
weight = Parameter(torch.empty(output_size_per_partition,
|
||||
input_size_per_partition,
|
||||
dtype=torch.float8_e4m3fn),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("weight", weight)
|
||||
set_weight_attrs(weight, {
|
||||
"input_dim": 1,
|
||||
"output_dim": 0,
|
||||
**extra_weight_attrs,
|
||||
})
|
||||
|
||||
# WEIGHT SCALE
|
||||
weight_scale = create_per_channel_scale_param(output_partition_sizes,
|
||||
**extra_weight_attrs)
|
||||
layer.register_parameter("weight_scale", weight_scale)
|
||||
|
||||
# INPUT SCALE UPPER BOUND
|
||||
input_scale_ub = torch.nn.Parameter(torch.tensor(
|
||||
(self.quant_config.input_scale_ub), dtype=torch.float32),
|
||||
requires_grad=False)
|
||||
layer.input_scale_ub = input_scale_ub
|
||||
|
||||
def process_weights_after_loading(self, layer: Module) -> None:
|
||||
weight = layer.weight
|
||||
layer.weight = Parameter(weight.t(), requires_grad=False)
|
||||
|
||||
def apply(self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
|
||||
return apply_fp8_linear(input=x,
|
||||
weight=layer.weight,
|
||||
weight_scale=layer.weight_scale,
|
||||
input_scale=None,
|
||||
input_scale_ub=layer.input_scale_ub,
|
||||
bias=bias,
|
||||
cutlass_fp8_supported=True,
|
||||
use_per_token_if_dynamic=True)
|
||||
@ -66,8 +66,8 @@ class Fp8Config(QuantizationConfig):
|
||||
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
|
||||
activation_scheme=activation_scheme)
|
||||
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["QuantizeMethodBase"]:
|
||||
from vllm.attention.layer import Attention # Avoid circular import
|
||||
|
||||
if isinstance(layer, LinearBase):
|
||||
|
||||
@ -69,8 +69,8 @@ class GPTQConfig(QuantizationConfig):
|
||||
default=False)
|
||||
return cls(weight_bits, group_size, desc_act, lm_head_quantized)
|
||||
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional["GPTQLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["GPTQLinearMethod"]:
|
||||
if (isinstance(layer, LinearBase) or
|
||||
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
|
||||
return GPTQLinearMethod(self)
|
||||
|
||||
@ -94,9 +94,8 @@ class GPTQMarlinConfig(QuantizationConfig):
|
||||
" faster inference")
|
||||
return None
|
||||
|
||||
def get_quant_method(
|
||||
self,
|
||||
layer: torch.nn.Module) -> Optional["GPTQMarlinLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["GPTQMarlinLinearMethod"]:
|
||||
if (isinstance(layer, LinearBase) or
|
||||
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
|
||||
return GPTQMarlinLinearMethod(self)
|
||||
|
||||
@ -109,9 +109,8 @@ class GPTQMarlin24Config(QuantizationConfig):
|
||||
|
||||
return None
|
||||
|
||||
def get_quant_method(
|
||||
self,
|
||||
layer: torch.nn.Module) -> Optional["GPTQMarlin24LinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["GPTQMarlin24LinearMethod"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return GPTQMarlin24LinearMethod(self)
|
||||
return None
|
||||
|
||||
@ -100,8 +100,8 @@ class MarlinConfig(QuantizationConfig):
|
||||
|
||||
return None
|
||||
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional["MarlinLinearMethod"]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["MarlinLinearMethod"]:
|
||||
if (isinstance(layer, LinearBase) or
|
||||
(isinstance(layer, ParallelLMHead) and self.lm_head_quantized)):
|
||||
return MarlinLinearMethod(self)
|
||||
|
||||
@ -52,8 +52,8 @@ class SqueezeLLMConfig(QuantizationConfig):
|
||||
weight_bits = cls.get_from_keys(config, ["wbits"])
|
||||
return cls(weight_bits)
|
||||
|
||||
def get_quant_method(
|
||||
self, layer: torch.nn.Module) -> Optional[QuantizeMethodBase]:
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional[QuantizeMethodBase]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return SqueezeLLMLinearMethod(self)
|
||||
return None
|
||||
|
||||
@ -105,6 +105,7 @@ def apply_fp8_linear(
|
||||
weight: torch.Tensor,
|
||||
weight_scale: torch.Tensor,
|
||||
input_scale: torch.Tensor,
|
||||
input_scale_ub: Optional[torch.Tensor] = None,
|
||||
bias: Optional[torch.Tensor] = None,
|
||||
cutlass_fp8_supported: bool = True,
|
||||
use_per_token_if_dynamic: bool = False,
|
||||
@ -118,6 +119,7 @@ def apply_fp8_linear(
|
||||
qinput, x_scale = ops.scaled_fp8_quant(
|
||||
input,
|
||||
input_scale,
|
||||
scale_ub=input_scale_ub,
|
||||
use_per_token_if_dynamic=use_per_token_if_dynamic)
|
||||
|
||||
# Fused GEMM_DQ
|
||||
|
||||
@ -161,6 +161,7 @@ class VocabParallelEmbedding(torch.nn.Module):
|
||||
org_num_embeddings: original vocabulary size (without LoRA).
|
||||
padding_size: padding size for the vocabulary.
|
||||
quant_config: quant config for the layer
|
||||
prefix: full name of the layer in the state dict
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(self,
|
||||
@ -169,7 +170,8 @@ class VocabParallelEmbedding(torch.nn.Module):
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
org_num_embeddings: Optional[int] = None,
|
||||
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
|
||||
quant_config: Optional[QuantizationConfig] = None):
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
# Keep the input dimensions.
|
||||
@ -195,7 +197,7 @@ class VocabParallelEmbedding(torch.nn.Module):
|
||||
|
||||
linear_method = None
|
||||
if quant_config is not None:
|
||||
linear_method = quant_config.get_quant_method(self)
|
||||
linear_method = quant_config.get_quant_method(self, prefix=prefix)
|
||||
if linear_method is None:
|
||||
linear_method = UnquantizedLinearMethod()
|
||||
self.linear_method: QuantizeMethodBase = linear_method
|
||||
@ -382,9 +384,11 @@ class ParallelLMHead(VocabParallelEmbedding):
|
||||
params_dtype: Optional[torch.dtype] = None,
|
||||
org_num_embeddings: Optional[int] = None,
|
||||
padding_size: int = DEFAULT_VOCAB_PADDING_SIZE,
|
||||
quant_config: Optional[QuantizationConfig] = None):
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = ""):
|
||||
super().__init__(num_embeddings, embedding_dim, params_dtype,
|
||||
org_num_embeddings, padding_size, quant_config)
|
||||
org_num_embeddings, padding_size, quant_config,
|
||||
prefix)
|
||||
if bias:
|
||||
self.bias = Parameter(
|
||||
torch.empty(self.num_embeddings_per_partition,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user