mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 20:44:27 +08:00
159 lines
5.7 KiB
Python
159 lines
5.7 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn import Module
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
|
UnquantizedLinearMethod)
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
apply_fp8_linear, create_per_channel_scale_param)
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# Note: this is a hack. We should update each model to register the
|
|
# stacked params and get it from there instead in a future PR.
|
|
# fused_name: List[shard_name]
|
|
_FUSED_LAYER_NAME_MAPPING = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"]
|
|
}
|
|
|
|
|
|
class FBGEMMFp8Config(QuantizationConfig):
|
|
"""Config class for FBGEMM Fp8."""
|
|
|
|
def __init__(self, ignore_list: List[str], input_scale_ub: float):
|
|
self.ignore_list = ignore_list
|
|
self.input_scale_ub = input_scale_ub
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "fbgemm_fp8"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.bfloat16, torch.float16]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 89
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "FBGEMMFp8Config":
|
|
ignore_list = cls.get_from_keys(config, ["modules_to_not_convert"])
|
|
input_scale_ub = cls.get_from_keys(config, ["activation_scale_ub"])
|
|
return cls(ignore_list=ignore_list, input_scale_ub=input_scale_ub)
|
|
|
|
def _is_layer_skipped(self, prefix: str) -> bool:
|
|
# prefix: model.layers.0.self_attn.q_proj
|
|
# proj_name: q_proj
|
|
proj_name = prefix.split(".")[-1]
|
|
if proj_name in _FUSED_LAYER_NAME_MAPPING:
|
|
shard_prefixes = [
|
|
prefix.replace(proj_name, shard_proj_name)
|
|
for shard_proj_name in _FUSED_LAYER_NAME_MAPPING[proj_name]
|
|
]
|
|
|
|
is_skipped = None
|
|
for shard_prefix in shard_prefixes:
|
|
is_shard_skipped = shard_prefix in self.ignore_list
|
|
|
|
if is_skipped is None:
|
|
is_skipped = is_shard_skipped
|
|
elif is_shard_skipped != is_skipped:
|
|
raise ValueError(
|
|
f"Detected some but not all shards of {prefix} "
|
|
"are quantized. All shards of fused layers "
|
|
"to have the same precision.")
|
|
else:
|
|
is_skipped = prefix in self.ignore_list
|
|
|
|
assert is_skipped is not None
|
|
return is_skipped
|
|
|
|
def get_quant_method(self, layer: torch.nn.Module,
|
|
prefix: str) -> Optional["QuantizeMethodBase"]:
|
|
if isinstance(layer, LinearBase):
|
|
if self._is_layer_skipped(prefix):
|
|
return UnquantizedLinearMethod()
|
|
return FBGEMMFp8LinearMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class FBGEMMFp8LinearMethod(LinearMethodBase):
|
|
|
|
def __init__(self, quant_config: FBGEMMFp8Config):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
del input_size, output_size
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
|
|
layer.logical_widths = output_partition_sizes
|
|
|
|
layer.input_size_per_partition = input_size_per_partition
|
|
layer.output_size_per_partition = output_size_per_partition
|
|
layer.orig_dtype = params_dtype
|
|
|
|
# WEIGHT
|
|
weight = Parameter(torch.empty(output_size_per_partition,
|
|
input_size_per_partition,
|
|
dtype=torch.float8_e4m3fn),
|
|
requires_grad=False)
|
|
layer.register_parameter("weight", weight)
|
|
set_weight_attrs(weight, {
|
|
"input_dim": 1,
|
|
"output_dim": 0,
|
|
**extra_weight_attrs,
|
|
})
|
|
|
|
# WEIGHT SCALE
|
|
weight_scale = create_per_channel_scale_param(output_partition_sizes,
|
|
**extra_weight_attrs)
|
|
layer.register_parameter("weight_scale", weight_scale)
|
|
|
|
# INPUT SCALE UPPER BOUND
|
|
input_scale_ub = torch.nn.Parameter(torch.tensor(
|
|
(self.quant_config.input_scale_ub), dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.input_scale_ub = input_scale_ub
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
weight = layer.weight
|
|
layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
|
|
def apply(self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
return apply_fp8_linear(input=x,
|
|
weight=layer.weight,
|
|
weight_scale=layer.weight_scale,
|
|
input_scale=None,
|
|
input_scale_ub=layer.input_scale_ub,
|
|
bias=bias,
|
|
cutlass_fp8_supported=True,
|
|
use_per_token_if_dynamic=True)
|