mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:35:01 +08:00
add internlm model (#528)
This commit is contained in:
parent
a57d13cc96
commit
735ecfff61
@ -19,6 +19,7 @@ _MODEL_REGISTRY = {
|
||||
"GPTBigCodeForCausalLM": GPTBigCodeForCausalLM,
|
||||
"GPTJForCausalLM": GPTJForCausalLM,
|
||||
"GPTNeoXForCausalLM": GPTNeoXForCausalLM,
|
||||
"InternLMForCausalLM": InternLMForCausalLM,
|
||||
"LlamaForCausalLM": LlamaForCausalLM,
|
||||
"LLaMAForCausalLM": LlamaForCausalLM, # For decapoda-research/llama-*
|
||||
"MPTForCausalLM": MPTForCausalLM,
|
||||
|
||||
@ -6,14 +6,24 @@ from vllm.model_executor.models.gpt2 import GPT2LMHeadModel
|
||||
from vllm.model_executor.models.gpt_bigcode import GPTBigCodeForCausalLM
|
||||
from vllm.model_executor.models.gpt_j import GPTJForCausalLM
|
||||
from vllm.model_executor.models.gpt_neox import GPTNeoXForCausalLM
|
||||
from vllm.model_executor.models.internlm import InternLMForCausalLM
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.models.mpt import MPTForCausalLM
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.models.qwen import QWenLMHeadModel
|
||||
|
||||
__all__ = [
|
||||
"BaiChuanForCausalLM", "BaichuanForCausalLM", "BloomForCausalLM",
|
||||
"FalconForCausalLM", "GPT2LMHeadModel", "GPTBigCodeForCausalLM",
|
||||
"GPTJForCausalLM", "GPTNeoXForCausalLM", "LlamaForCausalLM",
|
||||
"MPTForCausalLM", "OPTForCausalLM", "QWenLMHeadModel"
|
||||
"BaiChuanForCausalLM",
|
||||
"BaichuanForCausalLM",
|
||||
"BloomForCausalLM",
|
||||
"FalconForCausalLM",
|
||||
"GPT2LMHeadModel",
|
||||
"GPTBigCodeForCausalLM",
|
||||
"GPTJForCausalLM",
|
||||
"GPTNeoXForCausalLM",
|
||||
"InternLMForCausalLM",
|
||||
"LlamaForCausalLM",
|
||||
"MPTForCausalLM",
|
||||
"OPTForCausalLM",
|
||||
"QWenLMHeadModel",
|
||||
]
|
||||
|
||||
299
vllm/model_executor/models/internlm.py
Normal file
299
vllm/model_executor/models/internlm.py
Normal file
@ -0,0 +1,299 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import LlamaConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.weight_utils import (hf_model_weights_iterator,
|
||||
load_tensor_parallel_weights)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.parallel_utils.tensor_parallel import (
|
||||
VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
|
||||
from vllm.sequence import SequenceOutputs
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class InternLMMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = ColumnParallelLinear(hidden_size,
|
||||
2 * intermediate_size,
|
||||
bias=True,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=True,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class InternLMAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tensor_model_parallel_world_size = (
|
||||
get_tensor_model_parallel_world_size())
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||
self.num_heads = (self.total_num_heads //
|
||||
tensor_model_parallel_world_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.scaling = self.head_dim**-0.5
|
||||
|
||||
self.qkv_proj = ColumnParallelLinear(
|
||||
hidden_size,
|
||||
3 * self.total_num_heads * self.head_dim,
|
||||
bias=True,
|
||||
gather_output=False,
|
||||
perform_initialization=False,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=True,
|
||||
input_is_parallel=True,
|
||||
perform_initialization=False,
|
||||
)
|
||||
self.attn = PagedAttentionWithRoPE(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
rotary_dim=self.head_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
|
||||
input_metadata, cache_event)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class InternLMDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = InternLMAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
)
|
||||
self.mlp = InternLMMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class InternLMModel(nn.Module):
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
vocab_size, config.hidden_size, perform_initialization=False)
|
||||
self.layers = nn.ModuleList([
|
||||
InternLMDecoderLayer(config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
if cache_events is None:
|
||||
cache_event = None
|
||||
else:
|
||||
cache_event = cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class InternLMForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.model = InternLMModel(config)
|
||||
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
||||
self.lm_head = ColumnParallelLinear(config.hidden_size,
|
||||
vocab_size,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
perform_initialization=False)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> Dict[int, SequenceOutputs]:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
input_metadata)
|
||||
return next_tokens
|
||||
|
||||
_column_parallel_weights = [
|
||||
"embed_tokens.weight", "lm_head.weight", "qkv_proj.weight",
|
||||
"gate_proj.weight", "up_proj.weight"
|
||||
]
|
||||
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
use_np_cache: bool = False):
|
||||
tensor_model_parallel_world_size = (
|
||||
get_tensor_model_parallel_world_size())
|
||||
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
|
||||
state_dict = self.state_dict()
|
||||
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, use_np_cache):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
if "embed_tokens" in name or "lm_head" in name:
|
||||
param = state_dict[name]
|
||||
# Consider padding in the vocab size.
|
||||
padded_vocab_size = (param.shape[0] *
|
||||
tensor_model_parallel_world_size)
|
||||
num_extra_rows = padded_vocab_size - self.config.vocab_size
|
||||
extra_rows = torch.empty(num_extra_rows,
|
||||
loaded_weight.shape[1])
|
||||
extra_rows = extra_rows.to(loaded_weight)
|
||||
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
|
||||
|
||||
is_attention_weight = False
|
||||
for stride_id, att_weight_name in enumerate(
|
||||
["q_proj", "k_proj", "v_proj"]):
|
||||
if att_weight_name not in name:
|
||||
continue
|
||||
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
|
||||
shard_size = param.shape[0] // 3
|
||||
loaded_weight = loaded_weight[
|
||||
shard_size * tensor_model_parallel_rank:shard_size *
|
||||
(tensor_model_parallel_rank + 1)]
|
||||
param_slice = param.data[shard_size * stride_id:shard_size *
|
||||
(stride_id + 1)]
|
||||
assert param_slice.shape == loaded_weight.shape
|
||||
param_slice.copy_(loaded_weight)
|
||||
is_attention_weight = True
|
||||
break
|
||||
if is_attention_weight:
|
||||
continue
|
||||
|
||||
is_gate_up_weight = False
|
||||
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
|
||||
if weight_name not in name:
|
||||
continue
|
||||
param = state_dict[name.replace(weight_name, "gate_up_proj")]
|
||||
shard_size = param.shape[0] // 2
|
||||
loaded_weight = loaded_weight[
|
||||
shard_size * tensor_model_parallel_rank:shard_size *
|
||||
(tensor_model_parallel_rank + 1)]
|
||||
param_slice = param.data[shard_size * stride_id:shard_size *
|
||||
(stride_id + 1)]
|
||||
assert param_slice.shape == loaded_weight.shape
|
||||
param_slice.copy_(loaded_weight)
|
||||
is_gate_up_weight = True
|
||||
break
|
||||
if is_gate_up_weight:
|
||||
continue
|
||||
|
||||
param = state_dict[name]
|
||||
load_tensor_parallel_weights(param, loaded_weight, name,
|
||||
self._column_parallel_weights,
|
||||
self._row_parallel_weights,
|
||||
tensor_model_parallel_rank)
|
||||
Loading…
x
Reference in New Issue
Block a user