Use CuPy for CUDA graphs (#2811)

This commit is contained in:
Woosuk Kwon 2024-02-13 11:32:06 -08:00 committed by GitHub
parent ea356004d4
commit a463c333dd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 246 additions and 22 deletions

View File

@ -12,3 +12,4 @@ pydantic >= 2.0 # Required for OpenAI server.
aioprometheus[starlette]
pynvml == 11.5.0
triton >= 2.1.0
cupy-cuda12x == 12.3.0 # Required for CUDA graphs. CUDA 11.8 users should install cupy-cuda11x instead.

View File

@ -283,7 +283,7 @@ class LLMEngine:
is_driver_worker=True,
)
self._run_workers("init_model")
self._run_workers("init_model", cupy_port=get_open_port())
self._run_workers(
"load_model",
max_concurrent_workers=self.parallel_config.

View File

@ -1,14 +1,15 @@
from collections import namedtuple
from typing import Any, Dict, List, Optional, Union
import torch
from torch.distributed import ProcessGroup
import torch
from vllm.model_executor.parallel_utils import cupy_utils
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_group,
is_cupy_nccl_enabled_for_all_reduce,
)
from vllm.model_executor.parallel_utils.custom_all_reduce import custom_all_reduce
@ -31,8 +32,12 @@ def tensor_model_parallel_all_reduce(input_: torch.Tensor) -> torch.Tensor:
out = custom_all_reduce(input_)
if out is not None:
return out
torch.distributed.all_reduce(input_,
group=get_tensor_model_parallel_group())
if is_cupy_nccl_enabled_for_all_reduce():
# TODO: support multiple parallel groups.
cupy_utils.all_reduce(input_)
else:
torch.distributed.all_reduce(input_,
group=get_tensor_model_parallel_group())
return input_

View File

@ -0,0 +1,130 @@
"""CuPy utilities for all-reduce.
We use CuPy all-reduce instead of torch.distributed.all_reduce when capturing
CUDA graphs, because torch.distributed.all_reduce causes errors when capturing
CUDA graphs.
NOTE: We use CuPy 12.3 since CuPy 13.0 does not support Python 3.8.
TODO: Remove this file when torch.distributed.all_reduce is fixed.
"""
import contextlib
import torch
from torch.distributed import ReduceOp
try:
import cupy
from cupy.cuda import nccl
from cupyx.distributed import NCCLBackend
except ImportError as e:
cupy = e
nccl = None
class NCCLBackend:
...
_OP_MAPPING = {
ReduceOp.SUM: "sum",
ReduceOp.PRODUCT: "prod",
ReduceOp.MIN: "min",
ReduceOp.MAX: "max",
}
class NCCLBackendWithBFloat16(NCCLBackend):
# This is enough to add bfloat16 support for most operations,
# but broadcast will fail (will require changes in compiled
# cupy code).
def _get_nccl_dtype_and_count(self, array, count=None):
nccl_dtype, count = super()._get_nccl_dtype_and_count(array, count)
torch_dtype = getattr(array, "_torch_dtype", None)
if torch_dtype is torch.bfloat16:
nccl_dtype = nccl.NCCL_BFLOAT16
return nccl_dtype, count
def barrier(self) -> None:
raise RuntimeError(
"Currently, CuPy NCCL barrier is not supported since the TCP "
"store is immediately stopped after the initialization.")
_NCCL_BACKEND = None
_WORLD_SIZE = 0
def is_initialized() -> bool:
"""Returns whether the NCCL backend is initialized."""
return _NCCL_BACKEND is not None
@contextlib.contextmanager
def set_cupy_stream(stream: torch.cuda.Stream):
"""Set the cuda stream for communication"""
cupy_stream = cupy.cuda.ExternalStream(stream.cuda_stream,
stream.device_index)
with cupy_stream:
yield
def init_process_group(world_size: int, rank: int, host: str,
port: int) -> None:
"""Initializes the CuPy NCCL backend.
# TODO: handle NCCL timeouts.
"""
assert not is_initialized()
if isinstance(cupy, Exception):
raise ImportError(
"NCCLBackend is not available. Please install cupy.") from cupy
# TODO(woosuk): Create TP and PP process groups for CuPy.
global _NCCL_BACKEND
global _WORLD_SIZE
assert world_size > 0, f"{world_size=} should be a positive integer"
assert 0 <= rank < world_size, (
f"{rank=} should be a integer between [0, {world_size})")
cupy.cuda.runtime.setDevice(torch.cuda.current_device())
_NCCL_BACKEND = NCCLBackendWithBFloat16(world_size, rank, host, port)
_WORLD_SIZE = world_size
# Stop the TCP store to prevent the deadlock issues at termination time.
# FIXME(woosuk): This is hacky. Find a more robust solution.
if rank == 0 and hasattr(_NCCL_BACKEND, "_store"):
_NCCL_BACKEND._store.stop()
def all_reduce(input_: torch.Tensor, op=ReduceOp.SUM) -> None:
"""All-reduces the input tensor across the process group."""
assert input_.is_cuda, f"{input_} should be a cuda tensor"
# Hack to support bfloat16
torch_dtype = input_.dtype
if torch_dtype is torch.bfloat16:
# We need to view as float16, otherwise
# cupy will fail. This will not change
# the underlying data.
input_ = input_.view(torch.float16)
cupy_input = cupy.asarray(input_)
cupy_input._torch_dtype = torch_dtype # pylint: disable=protected-access
_NCCL_BACKEND.all_reduce(in_array=cupy_input,
out_array=cupy_input,
op=_OP_MAPPING[op])
def destroy_process_group() -> None:
"""Destroys the NCCL backend."""
global _NCCL_BACKEND
global _WORLD_SIZE
_NCCL_BACKEND = None
_WORLD_SIZE = 0
def get_world_size() -> int:
"""Returns the world size."""
return _WORLD_SIZE
def get_nccl_backend():
return _NCCL_BACKEND

View File

@ -3,9 +3,12 @@
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Tensor and pipeline parallel groups."""
import contextlib
import torch
from vllm.model_executor.parallel_utils import cupy_utils
# Tensor model parallel group that the current rank belongs to.
_TENSOR_MODEL_PARALLEL_GROUP = None
# Pipeline model parallel group that the current rank belongs to.
@ -206,3 +209,37 @@ def destroy_model_parallel():
_PIPELINE_MODEL_PARALLEL_GROUP = None
global _PIPELINE_GLOBAL_RANKS
_PIPELINE_GLOBAL_RANKS = None
# Destroy the cupy states if any.
cupy_utils.destroy_process_group()
# Whether to use cupy for nccl all reduce.
# We use cupy for all reduce when using CUDA graph, because torch.distributed
# is not well supported by CUDA graph.
_ENABLE_CUPY_FOR_ALL_REDUCE = False
@contextlib.contextmanager
def with_cupy_nccl_for_all_reduce():
"""use CuPy nccl instead of torch.distributed for all reduce"""
tp_size = get_tensor_model_parallel_world_size()
if tp_size == 1:
# No-op.
# NOTE(woosuk): We don't initialize CuPy when tp_size is 1.
yield
else:
global _ENABLE_CUPY_FOR_ALL_REDUCE
old = _ENABLE_CUPY_FOR_ALL_REDUCE
_ENABLE_CUPY_FOR_ALL_REDUCE = True
stream = torch.cuda.current_stream()
with cupy_utils.set_cupy_stream(stream):
yield
_ENABLE_CUPY_FOR_ALL_REDUCE = old
def is_cupy_nccl_enabled_for_all_reduce():
"""check if CuPy nccl is enabled for all reduce"""
global _ENABLE_CUPY_FOR_ALL_REDUCE
return _ENABLE_CUPY_FOR_ALL_REDUCE

View File

@ -15,8 +15,11 @@ def init_test_distributed_environment(
tensor_parallel_size,
worker_use_ray=True)
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(parallel_config, rank,
distributed_init_method)
init_distributed_environment(
parallel_config,
rank,
cupy_port=None,
distributed_init_method=distributed_init_method)
def multi_process_tensor_parallel(

View File

@ -5,11 +5,15 @@ import numpy as np
import torch
import torch.nn as nn
from vllm.config import DeviceConfig, ModelConfig, LoRAConfig, ParallelConfig, SchedulerConfig
from vllm.config import (DeviceConfig, ModelConfig, LoRAConfig, ParallelConfig,
SchedulerConfig)
from vllm.logger import init_logger
from vllm.model_executor import get_model, InputMetadata, SamplingMetadata
from vllm.model_executor.parallel_utils.communication_op import (
broadcast_tensor_dict)
from vllm.model_executor.parallel_utils.cupy_utils import get_nccl_backend
from vllm.model_executor.parallel_utils.parallel_state import (
with_cupy_nccl_for_all_reduce)
from vllm.model_executor.parallel_utils import custom_all_reduce
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
@ -644,6 +648,10 @@ class ModelRunner:
@torch.inference_mode()
def capture_model(self, kv_caches: List[KVCache]) -> None:
# NOTE(woosuk): This is a hack to ensure that the NCCL backend is never
# deleted before the CUDA graphs.
self.cupy_nccl_backend = get_nccl_backend()
assert not self.model_config.enforce_eager
logger.info("Capturing the model for CUDA graphs. This may lead to "
"unexpected consequences if the model is not static. To "
@ -674,6 +682,12 @@ class ModelRunner:
# NOTE: Capturing the largest batch size first may help reduce the
# memory usage of CUDA graph.
# NOTE(woosuk): There are 3 backends for all-reduce: custom all-reduce
# kernel, CuPy NCCL, and PyTorch NCCL. When using CUDA graph, we use
# either custom all-reduce kernel or CuPy NCCL. When not using CUDA
# graph, we use either custom all-reduce kernel or PyTorch NCCL.
# We always prioritize using custom all-reduce kernel but fall back
# to PyTorch or CuPy NCCL if it is disabled or not supported.
with custom_all_reduce.capture():
for batch_size in reversed(batch_size_capture_list):
# Create dummy input_metadata.
@ -713,6 +727,14 @@ class ModelRunner:
# This usually takes < 10 seconds.
logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.")
def __del__(self) -> None:
# Delete the CUDA graphs before deleting the CuPy NCCL communicator.
# NOTE(woosuk): This is necessary because otherwise deadlocks can
# happen.
# FIXME(woosuk): This is a bit hacky. Find a more robust solution.
self.graph_runners.clear()
self.cupy_nccl_backend = None
class CUDAGraphRunner:
@ -734,18 +756,8 @@ class CUDAGraphRunner:
# Run the model once without capturing the graph.
# This is to make sure that the captured graph does not include the
# kernel launches for initial benchmarking (e.g., Triton autotune).
self.model(
input_ids,
positions,
kv_caches,
input_metadata,
)
torch.cuda.synchronize()
# Capture the graph.
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph, pool=memory_pool):
hidden_states = self.model(
with with_cupy_nccl_for_all_reduce():
self.model(
input_ids,
positions,
kv_caches,
@ -753,6 +765,20 @@ class CUDAGraphRunner:
)
torch.cuda.synchronize()
# Capture the graph.
# NOTE(woosuk): Python 3.8 does not support multi-line with statements.
# https://stackoverflow.com/questions/31039022/python-multi-line-with-statement
self.graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(self.graph, pool=memory_pool): # noqa: SIM117
with with_cupy_nccl_for_all_reduce():
hidden_states = self.model(
input_ids,
positions,
kv_caches,
input_metadata,
)
torch.cuda.synchronize()
# Save the input and output buffers.
self.input_buffers = {
"input_ids": input_ids,

View File

@ -9,6 +9,7 @@ import torch.distributed
from vllm.config import (CacheConfig, DeviceConfig, ModelConfig,
ParallelConfig, SchedulerConfig, LoRAConfig)
from vllm.model_executor import set_random_seed
from vllm.model_executor.parallel_utils import cupy_utils
from vllm.model_executor.parallel_utils.communication_op import (
broadcast_tensor_dict)
from vllm.model_executor.parallel_utils.custom_all_reduce import init_custom_ar
@ -67,7 +68,7 @@ class Worker:
self.cache_events = None
self.gpu_cache = None
def init_model(self) -> None:
def init_model(self, cupy_port: Optional[int] = None) -> None:
if self.device_config.device.type == "cuda":
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
@ -88,7 +89,7 @@ class Worker:
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
init_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method)
cupy_port, self.distributed_init_method)
if not self.parallel_config.disable_custom_all_reduce:
init_custom_ar()
# Initialize the model.
@ -233,6 +234,7 @@ class Worker:
def init_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
cupy_port: Optional[int],
distributed_init_method: Optional[str] = None,
) -> None:
"""Initialize the distributed environment."""
@ -255,8 +257,28 @@ def init_distributed_environment(
init_method=distributed_init_method,
)
if cupy_utils.is_initialized():
cupy_world_size = cupy_utils.get_world_size()
if cupy_world_size != parallel_config.world_size:
raise RuntimeError(
"cupy.distributed is already initialized but the cupy world "
"size does not match parallel_config.world_size "
f"({cupy_world_size} vs. {parallel_config.world_size}).")
elif parallel_config.world_size > 1 and cupy_port is not None:
# NOTE(woosuk): We don't initialize CuPy process group when world size
# is 1.
# TODO(woosuk): Support multi-node connection.
cupy_utils.init_process_group(
world_size=parallel_config.world_size,
rank=rank,
host="localhost",
port=cupy_port,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
if cupy_utils.is_initialized():
cupy_utils.all_reduce(torch.zeros(1).cuda())
ensure_model_parallel_initialized(parallel_config.tensor_parallel_size,
parallel_config.pipeline_parallel_size)