[CI/Build][AMD] Add Llama4 Maverick FP8 to AMD CI (#28695)

Signed-off-by: zhewenli <zhewenli@meta.com>
This commit is contained in:
Zhewen Li 2025-12-04 16:07:20 -08:00 committed by GitHub
parent 4470ee2f90
commit bcf43ab1f3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 159 additions and 113 deletions

View File

@ -8,3 +8,4 @@ tasks:
value: 0.80
limit: 250 # will run on 250 * 14 subjects = 3500 samples
num_fewshot: 5
rtol: 0.05

View File

@ -0,0 +1 @@
Meta-Llama-4-Maverick-17B-128E-Instruct-FP8.yaml

View File

@ -9,11 +9,40 @@ pytest -s -v test_lm_eval_correctness.py \
--tp-size=1
"""
import os
from contextlib import contextmanager
import lm_eval
import numpy as np
import yaml
RTOL = 0.08
DEFAULT_RTOL = 0.08
@contextmanager
def scoped_env_vars(new_env: dict[str, str]):
if not new_env:
# Fast path: nothing to do
yield
return
old_values = {}
new_keys = []
try:
for key, value in new_env.items():
if key in os.environ:
old_values[key] = os.environ[key]
else:
new_keys.append(key)
os.environ[key] = str(value)
yield
finally:
# Restore / clean up
for key, value in old_values.items():
os.environ[key] = value
for key in new_keys:
os.environ.pop(key, None)
def launch_lm_eval(eval_config, tp_size):
@ -32,23 +61,26 @@ def launch_lm_eval(eval_config, tp_size):
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len},"
)
results = lm_eval.simple_evaluate(
model=backend,
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
# text models. however, this is regressing measured strict-match for
# existing text models in CI, so only apply it for mm, or explicitly set
apply_chat_template=eval_config.get(
"apply_chat_template", backend == "vllm-vlm"
),
fewshot_as_multiturn=eval_config.get("fewshot_as_multiturn", False),
# Forward decoding and early-stop controls (e.g., max_gen_toks, until=...)
gen_kwargs=eval_config.get("gen_kwargs"),
batch_size=batch_size,
)
env_vars = eval_config.get("env_vars", None)
with scoped_env_vars(env_vars):
results = lm_eval.simple_evaluate(
model=backend,
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
# text models. however, this is regressing measured strict-match for
# existing text models in CI, so only apply it for mm, or explicitly set
apply_chat_template=eval_config.get(
"apply_chat_template", backend == "vllm-vlm"
),
fewshot_as_multiturn=eval_config.get("fewshot_as_multiturn", False),
# Forward decoding and early-stop controls (e.g., max_gen_toks, until=...)
gen_kwargs=eval_config.get("gen_kwargs"),
batch_size=batch_size,
)
return results
@ -57,6 +89,8 @@ def test_lm_eval_correctness_param(config_filename, tp_size):
results = launch_lm_eval(eval_config, tp_size)
rtol = eval_config.get("rtol", DEFAULT_RTOL)
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
@ -64,8 +98,9 @@ def test_lm_eval_correctness_param(config_filename, tp_size):
measured_value = results["results"][task["name"]][metric["name"]]
print(
f"{task['name']} | {metric['name']}: "
f"ground_truth={ground_truth} | measured={measured_value}"
f"ground_truth={ground_truth:.3f} | "
f"measured={measured_value:.3f} | rtol={rtol}"
)
success = success and np.isclose(ground_truth, measured_value, rtol=RTOL)
success = success and np.isclose(ground_truth, measured_value, rtol=rtol)
assert success

View File

@ -718,17 +718,6 @@ steps:
- uv pip install --system conch-triton-kernels
- VLLM_TEST_FORCE_LOAD_FORMAT=auto pytest -v -s quantization/ --ignore quantization/test_blackwell_moe.py
- label: LM Eval Small Models # 15min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: OpenAI API correctness # 10min
timeout_in_minutes: 15
mirror_hardwares: [amdexperimental, amdproduction]
@ -974,19 +963,6 @@ steps:
- pytest -v -s models/multimodal -m core_model --ignore models/multimodal/generation/test_whisper.py --ignore models/multimodal/processing
- cd .. && VLLM_WORKER_MULTIPROC_METHOD=spawn pytest -v -s tests/models/multimodal/generation/test_whisper.py -m core_model # Otherwise, mp_method="spawn" doesn't work
- label: Multi-Modal Accuracy Eval (Small Models) # 10min
timeout_in_minutes: 70
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: Multi-Modal Models Test (Extended) 1 # 60min
timeout_in_minutes: 120
mirror_hardwares: [amdexperimental]
@ -1162,21 +1138,6 @@ steps:
# Run all e2e fusion tests
- pytest -v -s tests/compile/distributed/test_fusions_e2e.py
- label: ROCm GPT-OSS Eval
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
agent_pool: mi325_1
mirror_hardwares: [amdexperimental, amdproduction]
optional: true # run on nightlies
source_file_dependencies:
- tests/evals/gpt_oss
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- VLLM_ROCM_USE_AITER_MHA=0 VLLM_ROCM_USE_AITER=1 VLLM_USE_AITER_UNIFIED_ATTENTION=1 pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- label: Blackwell Quantized MoE Test
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
@ -1194,16 +1155,6 @@ steps:
commands:
- pytest -s -v tests/quantization/test_blackwell_moe.py
- label: Blackwell LM Eval Small Models
timeout_in_minutes: 120
gpu: b200
optional: true # run on nightlies
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
##### 1 GPU test #####
##### multi gpus test #####
@ -1380,7 +1331,7 @@ steps:
- pytest -v -s -x lora/test_llm_with_multi_loras.py
- pytest -v -s -x lora/test_olmoe_tp.py
# Disabled for now because MXFP4 backend on non-cuda platform
# Disabled for now because MXFP4 backend on non-cuda platform
# doesn't support LoRA yet
#- pytest -v -s -x lora/test_gptoss_tp.py
@ -1446,37 +1397,6 @@ steps:
- TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m 'distributed(num_gpus=2)'
- pytest -v -s -x lora/test_mixtral.py
- label: LM Eval Large Models # optional
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: a100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
##### H100 test #####
- label: LM Eval Large Models (H100) # optional
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
##### H200 test #####
- label: Distributed Tests (H200) # optional
mirror_hardwares: [amdexperimental]
@ -1508,20 +1428,94 @@ steps:
- pytest -v -s tests/distributed/test_nccl_symm_mem_allreduce.py
- pytest -v -s tests/v1/distributed/test_dbo.py
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_2
##### E2E Eval Tests #####
- label: LM Eval Small Models (1 Card) # 15min
timeout_in_minutes: 20
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
timeout_in_minutes: 30
optional: true
num_gpus: 2
working_dir: "/vllm-workspace"
source_file_dependencies:
- vllm/
- .buildkite/scripts/run-prime-rl-test.sh
- csrc/
- vllm/model_executor/layers/quantization
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-small.txt --tp-size=1
- label: Blackwell LM Eval Small Models
timeout_in_minutes: 120
gpu: b200
optional: true # run on nightlies
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- pytest -s -v evals/gsm8k/test_gsm8k_correctness.py --config-list-file=configs/models-blackwell.txt --tp-size=1
- label: Multi-Modal Accuracy Eval (Small Models) # 10min
timeout_in_minutes: 70
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_1
# grade: Blocking
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- vllm/multimodal/
- vllm/inputs/
- vllm/v1/core/
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: LM Eval Large Models (4 Card)
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: a100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large.txt --tp-size=4
- label: LM Eval Large Models (H100) # optional
mirror_hardwares: [amdexperimental, amdproduction]
agent_pool: mi325_4
# grade: Blocking
gpu: h100
optional: true
num_gpus: 4
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
source_file_dependencies:
- csrc/
- vllm/model_executor/layers/quantization
commands:
- export VLLM_USE_DEEP_GEMM=0 # We found Triton is faster than DeepGEMM for H100
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-hopper.txt --tp-size=4
- label: ROCm LM Eval Large Models (8 Card)
mirror_hardwares: [amdproduction]
agent_pool: mi325_8
num_gpus: 8
working_dir: "/vllm-workspace/.buildkite/lm-eval-harness"
commands:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-large-rocm.txt --tp-size=8
- label: ROCm GPT-OSS Eval
timeout_in_minutes: 60
working_dir: "/vllm-workspace/"
agent_pool: mi325_1
mirror_hardwares: [amdexperimental, amdproduction]
optional: true # run on nightlies
source_file_dependencies:
- tests/evals/gpt_oss
- vllm/model_executor/models/gpt_oss.py
- vllm/model_executor/layers/quantization/mxfp4.py
- vllm/v1/attention/backends/flashinfer.py
commands:
- uv pip install --system 'gpt-oss[eval]==0.0.5'
- VLLM_ROCM_USE_AITER_MHA=0 VLLM_ROCM_USE_AITER=1 VLLM_USE_AITER_UNIFIED_ATTENTION=1 pytest -s -v tests/evals/gpt_oss/test_gpqa_correctness.py --model openai/gpt-oss-20b --metric 0.58
- label: DeepSeek V2-Lite Accuracy
mirror_hardwares: [amdexperimental, amdproduction]
@ -1554,4 +1548,19 @@ steps:
num_gpus: 2
working_dir: "/vllm-workspace"
commands:
- bash .buildkite/scripts/scheduled_integration_test/qwen30b_a3b_fp8_block_ep_eplb.sh 0.8 200 8020 2 1
- bash .buildkite/scripts/scheduled_integration_test/qwen30b_a3b_fp8_block_ep_eplb.sh 0.8 200 8020 2 1
##### RL Integration Tests #####
- label: Prime-RL Integration Test # 15min
mirror_hardwares: [amdexperimental]
agent_pool: mi325_2
# grade: Blocking
timeout_in_minutes: 30
optional: true
num_gpus: 2
working_dir: "/vllm-workspace"
source_file_dependencies:
- vllm/
- .buildkite/scripts/run-prime-rl-test.sh
commands:
- bash .buildkite/scripts/run-prime-rl-test.sh