vllm/.buildkite/lm-eval-harness/test_lm_eval_correctness.py
Zhewen Li bcf43ab1f3
[CI/Build][AMD] Add Llama4 Maverick FP8 to AMD CI (#28695)
Signed-off-by: zhewenli <zhewenli@meta.com>
2025-12-04 16:07:20 -08:00

107 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
LM eval harness on model to compare vs HF baseline computed offline.
Configs are found in configs/$MODEL.yaml
pytest -s -v test_lm_eval_correctness.py \
--config-list-file=configs/models-small.txt \
--tp-size=1
"""
import os
from contextlib import contextmanager
import lm_eval
import numpy as np
import yaml
DEFAULT_RTOL = 0.08
@contextmanager
def scoped_env_vars(new_env: dict[str, str]):
if not new_env:
# Fast path: nothing to do
yield
return
old_values = {}
new_keys = []
try:
for key, value in new_env.items():
if key in os.environ:
old_values[key] = os.environ[key]
else:
new_keys.append(key)
os.environ[key] = str(value)
yield
finally:
# Restore / clean up
for key, value in old_values.items():
os.environ[key] = value
for key in new_keys:
os.environ.pop(key, None)
def launch_lm_eval(eval_config, tp_size):
trust_remote_code = eval_config.get("trust_remote_code", False)
max_model_len = eval_config.get("max_model_len", 4096)
batch_size = eval_config.get("batch_size", "auto")
backend = eval_config.get("backend", "vllm")
enforce_eager = eval_config.get("enforce_eager", "true")
kv_cache_dtype = eval_config.get("kv_cache_dtype", "auto")
model_args = (
f"pretrained={eval_config['model_name']},"
f"tensor_parallel_size={tp_size},"
f"enforce_eager={enforce_eager},"
f"kv_cache_dtype={kv_cache_dtype},"
f"add_bos_token=true,"
f"trust_remote_code={trust_remote_code},"
f"max_model_len={max_model_len},"
)
env_vars = eval_config.get("env_vars", None)
with scoped_env_vars(env_vars):
results = lm_eval.simple_evaluate(
model=backend,
model_args=model_args,
tasks=[task["name"] for task in eval_config["tasks"]],
num_fewshot=eval_config["num_fewshot"],
limit=eval_config["limit"],
# TODO(yeq): using chat template w/ fewshot_as_multiturn is supposed help
# text models. however, this is regressing measured strict-match for
# existing text models in CI, so only apply it for mm, or explicitly set
apply_chat_template=eval_config.get(
"apply_chat_template", backend == "vllm-vlm"
),
fewshot_as_multiturn=eval_config.get("fewshot_as_multiturn", False),
# Forward decoding and early-stop controls (e.g., max_gen_toks, until=...)
gen_kwargs=eval_config.get("gen_kwargs"),
batch_size=batch_size,
)
return results
def test_lm_eval_correctness_param(config_filename, tp_size):
eval_config = yaml.safe_load(config_filename.read_text(encoding="utf-8"))
results = launch_lm_eval(eval_config, tp_size)
rtol = eval_config.get("rtol", DEFAULT_RTOL)
success = True
for task in eval_config["tasks"]:
for metric in task["metrics"]:
ground_truth = metric["value"]
measured_value = results["results"][task["name"]][metric["name"]]
print(
f"{task['name']} | {metric['name']}: "
f"ground_truth={ground_truth:.3f} | "
f"measured={measured_value:.3f} | rtol={rtol}"
)
success = success and np.isclose(ground_truth, measured_value, rtol=rtol)
assert success