Reduce logs in CLI scripts and plugin loader (#18970)

Signed-off-by: mgoin <mgoin64@gmail.com>
This commit is contained in:
Michael Goin 2025-06-03 02:00:45 -04:00 committed by GitHub
parent 17430e3653
commit cc977286e7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 19 additions and 15 deletions

View File

@ -328,9 +328,9 @@ class RandomDataset(BenchmarkDataset):
output_high = int(output_len * (1 + range_ratio))
# Add logging for debugging
logger.info("Sampling input_len from [%s, %s]", input_low, input_high)
logger.info("Sampling output_len from [%s, %s]", output_low,
output_high)
logger.info(
"Sampling input_len from [%s, %s] and output_len from [%s, %s]",
input_low, input_high, output_low, output_high)
input_lens = np.random.randint(input_low,
input_high + 1,

View File

@ -78,7 +78,6 @@ def add_cli_args(parser: argparse.ArgumentParser):
def main(args: argparse.Namespace):
print(args)
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
@ -101,7 +100,6 @@ def main(args: argparse.Namespace):
max_tokens=args.output_len,
detokenize=not args.disable_detokenize,
)
print(sampling_params)
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))

View File

@ -527,7 +527,6 @@ def main(args: argparse.Namespace):
validate_args(args)
if args.seed is None:
args.seed = 0
print(args)
random.seed(args.seed)
# Sample the requests.
tokenizer = AutoTokenizer.from_pretrained(

View File

@ -31,13 +31,13 @@ def make_compiler(compilation_config: CompilationConfig) -> CompilerInterface:
if compilation_config.use_inductor:
if envs.VLLM_USE_STANDALONE_COMPILE and is_torch_equal_or_newer(
"2.8.0"):
logger.info("Using InductorStandaloneAdaptor")
logger.debug("Using InductorStandaloneAdaptor")
return InductorStandaloneAdaptor()
else:
logger.info("Using InductorAdaptor")
logger.debug("Using InductorAdaptor")
return InductorAdaptor()
else:
logger.info("Using EagerAdaptor")
logger.debug("Using EagerAdaptor")
return EagerAdaptor()

View File

@ -10,6 +10,8 @@ import vllm.envs as envs
logger = logging.getLogger(__name__)
DEFAULT_PLUGINS_GROUP = 'vllm.general_plugins'
# make sure one process only loads plugins once
plugins_loaded = False
@ -28,19 +30,24 @@ def load_plugins_by_group(group: str) -> dict[str, Callable[[], Any]]:
logger.debug("No plugins for group %s found.", group)
return {}
logger.info("Available plugins for group %s:", group)
# Check if the only discovered plugin is the default one
is_default_group = (group == DEFAULT_PLUGINS_GROUP)
# Use INFO for non-default groups and DEBUG for the default group
log_level = logger.debug if is_default_group else logger.info
log_level("Available plugins for group %s:", group)
for plugin in discovered_plugins:
logger.info("- %s -> %s", plugin.name, plugin.value)
log_level("- %s -> %s", plugin.name, plugin.value)
if allowed_plugins is None:
logger.info("All plugins in this group will be loaded. "
"Set `VLLM_PLUGINS` to control which plugins to load.")
log_level("All plugins in this group will be loaded. "
"Set `VLLM_PLUGINS` to control which plugins to load.")
plugins = dict[str, Callable[[], Any]]()
for plugin in discovered_plugins:
if allowed_plugins is None or plugin.name in allowed_plugins:
if allowed_plugins is not None:
logger.info("Loading plugin %s", plugin.name)
log_level("Loading plugin %s", plugin.name)
try:
func = plugin.load()
@ -80,7 +87,7 @@ def load_general_plugins():
# see https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_HPU_Graphs.html # noqa: E501
os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES'] = 'true'
plugins = load_plugins_by_group(group='vllm.general_plugins')
plugins = load_plugins_by_group(group=DEFAULT_PLUGINS_GROUP)
# general plugins, we only need to execute the loaded functions
for func in plugins.values():
func()