mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-18 02:55:02 +08:00
Enable conversion of multimodal models to pooling tasks (#24451)
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
This commit is contained in:
parent
6a50eaa0d3
commit
e090b7b45b
114
tests/models/language/pooling/test_mm_classifier_conversion.py
Normal file
114
tests/models/language/pooling/test_mm_classifier_conversion.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
|
from vllm.platforms import current_platform
|
||||||
|
|
||||||
|
|
||||||
|
def test_idefics_multimodal(
|
||||||
|
vllm_runner,
|
||||||
|
monkeypatch,
|
||||||
|
) -> None:
|
||||||
|
if current_platform.is_rocm():
|
||||||
|
# ROCm Triton FA does not currently support sliding window attention
|
||||||
|
# switch to use ROCm CK FA backend
|
||||||
|
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
|
||||||
|
|
||||||
|
prompts = [
|
||||||
|
"Hello, my name is",
|
||||||
|
"The president of the United States is",
|
||||||
|
"The capital of France is",
|
||||||
|
"The future of AI is",
|
||||||
|
]
|
||||||
|
|
||||||
|
with vllm_runner(model_name="HuggingFaceM4/Idefics3-8B-Llama3",
|
||||||
|
runner="pooling",
|
||||||
|
task="classify",
|
||||||
|
convert="classify",
|
||||||
|
load_format="dummy",
|
||||||
|
max_model_len=512,
|
||||||
|
enforce_eager=True,
|
||||||
|
tensor_parallel_size=1,
|
||||||
|
disable_log_stats=True,
|
||||||
|
dtype="bfloat16") as vllm_model:
|
||||||
|
llm = vllm_model.get_llm()
|
||||||
|
outputs = llm.classify(prompts)
|
||||||
|
for output in outputs:
|
||||||
|
assert len(output.outputs.probs) == 2
|
||||||
|
|
||||||
|
|
||||||
|
def update_config(config):
|
||||||
|
config.text_config.update({
|
||||||
|
"architectures": ["Gemma3ForSequenceClassification"],
|
||||||
|
"classifier_from_token": ["A", "B", "C", "D", "E"],
|
||||||
|
"method":
|
||||||
|
"no_post_processing",
|
||||||
|
"id2label": {
|
||||||
|
"A": "Chair",
|
||||||
|
"B": "Couch",
|
||||||
|
"C": "Table",
|
||||||
|
"D": "Bed",
|
||||||
|
"E": "Cupboard"
|
||||||
|
},
|
||||||
|
})
|
||||||
|
return config
|
||||||
|
|
||||||
|
|
||||||
|
def test_gemma_multimodal(
|
||||||
|
vllm_runner,
|
||||||
|
monkeypatch,
|
||||||
|
) -> None:
|
||||||
|
if current_platform.is_rocm():
|
||||||
|
# ROCm Triton FA does not currently support sliding window attention
|
||||||
|
# switch to use ROCm CK FA backend
|
||||||
|
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
|
||||||
|
|
||||||
|
messages = [{
|
||||||
|
"role":
|
||||||
|
"system",
|
||||||
|
"content":
|
||||||
|
"""
|
||||||
|
You are a helpful assistant. You will be given a product description
|
||||||
|
which may also include an image. Classify the following product into
|
||||||
|
one of the categories:
|
||||||
|
|
||||||
|
A = chair
|
||||||
|
B = couch
|
||||||
|
C = table
|
||||||
|
D = bed
|
||||||
|
E = cupboard
|
||||||
|
|
||||||
|
You'll answer with exactly one letter (A, B, C, D, or E)."""
|
||||||
|
}, {
|
||||||
|
"role":
|
||||||
|
"user",
|
||||||
|
"content": [{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url":
|
||||||
|
"https://upload.wikimedia.org/wikipedia/commons/c/c6/Set_of_fourteen_side_chairs_MET_DP110780.jpg"
|
||||||
|
}
|
||||||
|
}, {
|
||||||
|
"type": "text",
|
||||||
|
"text": "A fine 19th century piece of furniture."
|
||||||
|
}]
|
||||||
|
}]
|
||||||
|
|
||||||
|
with vllm_runner(model_name="google/gemma-3-4b-it",
|
||||||
|
runner="pooling",
|
||||||
|
task="classify",
|
||||||
|
convert="classify",
|
||||||
|
load_format="auto",
|
||||||
|
hf_overrides=update_config,
|
||||||
|
override_pooler_config={"pooling_type": "LAST"},
|
||||||
|
max_model_len=512,
|
||||||
|
enforce_eager=True,
|
||||||
|
tensor_parallel_size=1,
|
||||||
|
disable_log_stats=True,
|
||||||
|
dtype="bfloat16") as vllm_model:
|
||||||
|
|
||||||
|
llm = vllm_model.get_llm()
|
||||||
|
prompts = llm.preprocess_chat(messages)
|
||||||
|
|
||||||
|
result = llm.classify(prompts)
|
||||||
|
assert result[0].outputs.probs[0] > 0.95
|
||||||
|
assert all(c < 0.05 for c in result[0].outputs.probs[1:])
|
||||||
@ -703,6 +703,106 @@ class LLM:
|
|||||||
|
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
|
def preprocess_chat(
|
||||||
|
self,
|
||||||
|
messages: Union[list[ChatCompletionMessageParam],
|
||||||
|
list[list[ChatCompletionMessageParam]]],
|
||||||
|
lora_request: Optional[LoRARequest] = None,
|
||||||
|
chat_template: Optional[str] = None,
|
||||||
|
chat_template_content_format: ChatTemplateContentFormatOption = "auto",
|
||||||
|
add_generation_prompt: bool = True,
|
||||||
|
continue_final_message: bool = False,
|
||||||
|
tools: Optional[list[dict[str, Any]]] = None,
|
||||||
|
chat_template_kwargs: Optional[dict[str, Any]] = None,
|
||||||
|
mm_processor_kwargs: Optional[dict[str, Any]] = None,
|
||||||
|
) -> list[TokensPrompt]:
|
||||||
|
"""
|
||||||
|
Generate prompt for a chat conversation. The pre-processed
|
||||||
|
prompt can then be used as input for the other LLM methods.
|
||||||
|
|
||||||
|
Refer to `chat` for a complete description of the arguments.
|
||||||
|
Returns:
|
||||||
|
A list of `TokensPrompts` objects containing the tokenized
|
||||||
|
prompt after chat template interpolation, and the
|
||||||
|
pre-processed multi-modal inputs.
|
||||||
|
"""
|
||||||
|
list_of_messages: list[list[ChatCompletionMessageParam]]
|
||||||
|
|
||||||
|
# Handle multi and single conversations
|
||||||
|
if is_list_of(messages, list):
|
||||||
|
# messages is list[list[...]]
|
||||||
|
list_of_messages = cast(list[list[ChatCompletionMessageParam]],
|
||||||
|
messages)
|
||||||
|
else:
|
||||||
|
# messages is list[...]
|
||||||
|
list_of_messages = [
|
||||||
|
cast(list[ChatCompletionMessageParam], messages)
|
||||||
|
]
|
||||||
|
|
||||||
|
tokenizer = self.get_tokenizer(lora_request)
|
||||||
|
model_config = self.llm_engine.get_model_config()
|
||||||
|
resolved_content_format = resolve_chat_template_content_format(
|
||||||
|
chat_template,
|
||||||
|
tools,
|
||||||
|
chat_template_content_format,
|
||||||
|
tokenizer,
|
||||||
|
model_config=model_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
_chat_template_kwargs: dict[str, Any] = dict(
|
||||||
|
chat_template=chat_template,
|
||||||
|
add_generation_prompt=add_generation_prompt,
|
||||||
|
continue_final_message=continue_final_message,
|
||||||
|
tools=tools,
|
||||||
|
)
|
||||||
|
_chat_template_kwargs.update(chat_template_kwargs or {})
|
||||||
|
|
||||||
|
prompts: list[TokensPrompt] = []
|
||||||
|
|
||||||
|
for msgs in list_of_messages:
|
||||||
|
# NOTE: _parse_chat_message_content_parts() currently doesn't
|
||||||
|
# handle mm_processor_kwargs, since there is no implementation in
|
||||||
|
# the chat message parsing for it.
|
||||||
|
conversation, mm_data, mm_uuids = parse_chat_messages(
|
||||||
|
msgs,
|
||||||
|
model_config,
|
||||||
|
tokenizer,
|
||||||
|
content_format=resolved_content_format,
|
||||||
|
)
|
||||||
|
|
||||||
|
if isinstance(tokenizer, MistralTokenizer):
|
||||||
|
prompt_token_ids = apply_mistral_chat_template(
|
||||||
|
tokenizer,
|
||||||
|
messages=msgs,
|
||||||
|
**_chat_template_kwargs,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
prompt_str = apply_hf_chat_template(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
conversation=conversation,
|
||||||
|
model_config=model_config,
|
||||||
|
**_chat_template_kwargs,
|
||||||
|
)
|
||||||
|
# Special tokens are already included in chat templates so
|
||||||
|
# should not be added by the tokenizer in this case.
|
||||||
|
prompt_token_ids = tokenizer.encode(prompt_str,
|
||||||
|
add_special_tokens=False)
|
||||||
|
|
||||||
|
prompt = TokensPrompt(prompt_token_ids=prompt_token_ids)
|
||||||
|
|
||||||
|
if mm_data is not None:
|
||||||
|
prompt["multi_modal_data"] = mm_data
|
||||||
|
|
||||||
|
if mm_uuids is not None:
|
||||||
|
prompt["multi_modal_uuids"] = mm_uuids
|
||||||
|
|
||||||
|
if mm_processor_kwargs is not None:
|
||||||
|
prompt["mm_processor_kwargs"] = mm_processor_kwargs
|
||||||
|
|
||||||
|
prompts.append(prompt)
|
||||||
|
|
||||||
|
return prompts
|
||||||
|
|
||||||
def chat(
|
def chat(
|
||||||
self,
|
self,
|
||||||
messages: Union[list[ChatCompletionMessageParam],
|
messages: Union[list[ChatCompletionMessageParam],
|
||||||
@ -769,80 +869,18 @@ class LLM:
|
|||||||
A list of `RequestOutput` objects containing the generated
|
A list of `RequestOutput` objects containing the generated
|
||||||
responses in the same order as the input messages.
|
responses in the same order as the input messages.
|
||||||
"""
|
"""
|
||||||
list_of_messages: list[list[ChatCompletionMessageParam]]
|
|
||||||
|
|
||||||
# Handle multi and single conversations
|
prompts = self.preprocess_chat(
|
||||||
if is_list_of(messages, list):
|
messages=messages,
|
||||||
# messages is list[list[...]]
|
lora_request=lora_request,
|
||||||
list_of_messages = cast(list[list[ChatCompletionMessageParam]],
|
|
||||||
messages)
|
|
||||||
else:
|
|
||||||
# messages is list[...]
|
|
||||||
list_of_messages = [
|
|
||||||
cast(list[ChatCompletionMessageParam], messages)
|
|
||||||
]
|
|
||||||
|
|
||||||
tokenizer = self.get_tokenizer(lora_request)
|
|
||||||
model_config = self.llm_engine.get_model_config()
|
|
||||||
resolved_content_format = resolve_chat_template_content_format(
|
|
||||||
chat_template,
|
|
||||||
tools,
|
|
||||||
chat_template_content_format,
|
|
||||||
tokenizer,
|
|
||||||
model_config=model_config,
|
|
||||||
)
|
|
||||||
|
|
||||||
_chat_template_kwargs: dict[str, Any] = dict(
|
|
||||||
chat_template=chat_template,
|
chat_template=chat_template,
|
||||||
|
chat_template_content_format=chat_template_content_format,
|
||||||
add_generation_prompt=add_generation_prompt,
|
add_generation_prompt=add_generation_prompt,
|
||||||
continue_final_message=continue_final_message,
|
continue_final_message=continue_final_message,
|
||||||
tools=tools,
|
tools=tools,
|
||||||
|
chat_template_kwargs=chat_template_kwargs,
|
||||||
|
mm_processor_kwargs=mm_processor_kwargs,
|
||||||
)
|
)
|
||||||
_chat_template_kwargs.update(chat_template_kwargs or {})
|
|
||||||
|
|
||||||
prompts: list[Union[TokensPrompt, TextPrompt]] = []
|
|
||||||
|
|
||||||
for msgs in list_of_messages:
|
|
||||||
# NOTE: _parse_chat_message_content_parts() currently doesn't
|
|
||||||
# handle mm_processor_kwargs, since there is no implementation in
|
|
||||||
# the chat message parsing for it.
|
|
||||||
conversation, mm_data, mm_uuids = parse_chat_messages(
|
|
||||||
msgs,
|
|
||||||
model_config,
|
|
||||||
tokenizer,
|
|
||||||
content_format=resolved_content_format,
|
|
||||||
)
|
|
||||||
|
|
||||||
if isinstance(tokenizer, MistralTokenizer):
|
|
||||||
prompt_token_ids = apply_mistral_chat_template(
|
|
||||||
tokenizer,
|
|
||||||
messages=msgs,
|
|
||||||
**_chat_template_kwargs,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
prompt_str = apply_hf_chat_template(
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
conversation=conversation,
|
|
||||||
model_config=model_config,
|
|
||||||
**_chat_template_kwargs,
|
|
||||||
)
|
|
||||||
# Special tokens are already included in chat templates so
|
|
||||||
# should not be added by the tokenizer in this case.
|
|
||||||
prompt_token_ids = tokenizer.encode(prompt_str,
|
|
||||||
add_special_tokens=False)
|
|
||||||
|
|
||||||
prompt = TokensPrompt(prompt_token_ids=prompt_token_ids)
|
|
||||||
|
|
||||||
if mm_data is not None:
|
|
||||||
prompt["multi_modal_data"] = mm_data
|
|
||||||
|
|
||||||
if mm_uuids is not None:
|
|
||||||
prompt["multi_modal_uuids"] = mm_uuids
|
|
||||||
|
|
||||||
if mm_processor_kwargs is not None:
|
|
||||||
prompt["mm_processor_kwargs"] = mm_processor_kwargs
|
|
||||||
|
|
||||||
prompts.append(prompt)
|
|
||||||
|
|
||||||
return self.generate(
|
return self.generate(
|
||||||
prompts,
|
prompts,
|
||||||
|
|||||||
@ -19,10 +19,11 @@ from vllm.logger import init_logger
|
|||||||
from vllm.model_executor.layers.linear import QKVCrossParallelLinear
|
from vllm.model_executor.layers.linear import QKVCrossParallelLinear
|
||||||
from vllm.model_executor.layers.quantization.base_config import (
|
from vllm.model_executor.layers.quantization.base_config import (
|
||||||
QuantizationConfig, QuantizeMethodBase)
|
QuantizationConfig, QuantizeMethodBase)
|
||||||
from vllm.model_executor.models.adapters import (as_embedding_model,
|
from vllm.model_executor.models.adapters import (
|
||||||
as_reward_model,
|
as_embedding_model, as_reward_model, as_seq_cls_model,
|
||||||
as_seq_cls_model)
|
try_create_mm_pooling_model_cls)
|
||||||
from vllm.model_executor.models.interfaces import SupportsQuant
|
from vllm.model_executor.models.interfaces import (SupportsQuant,
|
||||||
|
supports_multimodal)
|
||||||
from vllm.utils import is_pin_memory_available
|
from vllm.utils import is_pin_memory_available
|
||||||
|
|
||||||
logger = init_logger(__name__)
|
logger = init_logger(__name__)
|
||||||
@ -183,6 +184,15 @@ def get_model_architecture(
|
|||||||
"performance may not be optimal.", arch)
|
"performance may not be optimal.", arch)
|
||||||
|
|
||||||
convert_type = model_config.convert_type
|
convert_type = model_config.convert_type
|
||||||
|
if convert_type != "none" and supports_multimodal(model_cls):
|
||||||
|
logger.debug_once("Detected conversion of Multi Modal model.")
|
||||||
|
converted = try_create_mm_pooling_model_cls(model_cls)
|
||||||
|
if converted is not None:
|
||||||
|
logger.debug_once("Creating wrapper class to forward pooler.")
|
||||||
|
return converted, arch
|
||||||
|
else:
|
||||||
|
logger.debug_once("Attempting direct conversion.")
|
||||||
|
|
||||||
if convert_type == "none":
|
if convert_type == "none":
|
||||||
pass
|
pass
|
||||||
elif convert_type == "embed":
|
elif convert_type == "embed":
|
||||||
|
|||||||
@ -1,12 +1,15 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
|
import ast
|
||||||
|
import inspect
|
||||||
from collections.abc import Iterable
|
from collections.abc import Iterable
|
||||||
from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast
|
from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from vllm.config import VllmConfig
|
||||||
from vllm.logger import init_logger
|
from vllm.logger import init_logger
|
||||||
from vllm.model_executor.layers.activation import get_act_fn
|
from vllm.model_executor.layers.activation import get_act_fn
|
||||||
from vllm.model_executor.models.config import VerifyAndUpdateConfig
|
from vllm.model_executor.models.config import VerifyAndUpdateConfig
|
||||||
@ -129,6 +132,41 @@ def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
|
|||||||
return model_name + pooling_suffix
|
return model_name + pooling_suffix
|
||||||
|
|
||||||
|
|
||||||
|
def try_create_mm_pooling_model_cls(orig_cls: _T) -> _T:
|
||||||
|
|
||||||
|
class CallVisitor(ast.NodeVisitor):
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.calls = []
|
||||||
|
|
||||||
|
def visit_Call(self, node):
|
||||||
|
if isinstance(node.func, ast.Name):
|
||||||
|
self.calls.append(node.func.id)
|
||||||
|
self.generic_visit(node)
|
||||||
|
|
||||||
|
visitor = CallVisitor()
|
||||||
|
visitor.visit(ast.parse(inspect.getsource(orig_cls)))
|
||||||
|
if "init_vllm_registered_model" not in visitor.calls:
|
||||||
|
return None
|
||||||
|
|
||||||
|
class ModelForPooling(orig_cls, VllmModelForPooling):
|
||||||
|
|
||||||
|
is_pooling_model = True
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
vllm_config: "VllmConfig",
|
||||||
|
prefix: str = "",
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> None:
|
||||||
|
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
|
||||||
|
|
||||||
|
self.pooler = self.get_language_model().pooler
|
||||||
|
|
||||||
|
return ModelForPooling # type: ignore
|
||||||
|
|
||||||
|
|
||||||
def _create_pooling_model_cls(orig_cls: _T) -> _T:
|
def _create_pooling_model_cls(orig_cls: _T) -> _T:
|
||||||
# Lazy import
|
# Lazy import
|
||||||
from .utils import AutoWeightsLoader, WeightsMapper
|
from .utils import AutoWeightsLoader, WeightsMapper
|
||||||
@ -399,6 +437,7 @@ def load_weights_using_from_2_way_softmax(
|
|||||||
from vllm.model_executor.models.utils import AutoWeightsLoader
|
from vllm.model_executor.models.utils import AutoWeightsLoader
|
||||||
|
|
||||||
model_config = model.vllm_config.model_config
|
model_config = model.vllm_config.model_config
|
||||||
|
|
||||||
tokens = getattr(model.config, "classifier_from_token", [])
|
tokens = getattr(model.config, "classifier_from_token", [])
|
||||||
tokens = cast(list[int], tokens)
|
tokens = cast(list[int], tokens)
|
||||||
assert len(tokens) == 2
|
assert len(tokens) == 2
|
||||||
@ -406,9 +445,10 @@ def load_weights_using_from_2_way_softmax(
|
|||||||
if model.config.tie_word_embeddings:
|
if model.config.tie_word_embeddings:
|
||||||
model.lm_head = model.model.embed_tokens
|
model.lm_head = model.model.embed_tokens
|
||||||
else:
|
else:
|
||||||
|
quant_config = model.vllm_config.quant_config
|
||||||
model.lm_head = ParallelLMHead(model.config.vocab_size,
|
model.lm_head = ParallelLMHead(model.config.vocab_size,
|
||||||
model.config.hidden_size,
|
model.config.hidden_size,
|
||||||
quant_config=model.quant_config)
|
quant_config=quant_config)
|
||||||
|
|
||||||
loader = AutoWeightsLoader(model)
|
loader = AutoWeightsLoader(model)
|
||||||
loaded_weights = loader.load_weights(weights)
|
loaded_weights = loader.load_weights(weights)
|
||||||
@ -452,9 +492,10 @@ def load_weights_no_post_processing(model,
|
|||||||
if model.config.tie_word_embeddings:
|
if model.config.tie_word_embeddings:
|
||||||
model.lm_head = model.model.embed_tokens
|
model.lm_head = model.model.embed_tokens
|
||||||
else:
|
else:
|
||||||
|
quant_config = model.vllm_config.quant_config
|
||||||
model.lm_head = ParallelLMHead(model.config.vocab_size,
|
model.lm_head = ParallelLMHead(model.config.vocab_size,
|
||||||
model.config.hidden_size,
|
model.config.hidden_size,
|
||||||
quant_config=model.quant_config)
|
quant_config=quant_config)
|
||||||
|
|
||||||
loader = AutoWeightsLoader(model)
|
loader = AutoWeightsLoader(model)
|
||||||
loaded_weights = loader.load_weights(weights)
|
loaded_weights = loader.load_weights(weights)
|
||||||
|
|||||||
@ -512,7 +512,11 @@ class Gemma3ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
|
|||||||
architectures=["Gemma3ForCausalLM"],
|
architectures=["Gemma3ForCausalLM"],
|
||||||
)
|
)
|
||||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||||
self.language_model.logits_processor.scale *= logit_scale
|
|
||||||
|
if hasattr(self.language_model, "logits_processor"):
|
||||||
|
# The logits processor can be unset if we're using
|
||||||
|
# automatic conversion to pooling model.
|
||||||
|
self.language_model.logits_processor.scale *= logit_scale
|
||||||
|
|
||||||
self.make_empty_intermediate_tensors = (
|
self.make_empty_intermediate_tensors = (
|
||||||
self.language_model.make_empty_intermediate_tensors)
|
self.language_model.make_empty_intermediate_tensors)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user