[Model] GPT2ForSequenceClassification model (#19663)

Signed-off-by: nie3e <adrcwiek@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Adrian 2025-06-20 14:07:41 +02:00 committed by GitHub
parent 7771d1de88
commit f1e840e842
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 57 additions and 1 deletions

View File

@ -267,6 +267,7 @@ _EMBEDDING_EXAMPLE_MODELS = {
# [Text-only] # [Text-only]
"BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5", v0_only=True), "BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5", v0_only=True),
"Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2", v0_only=True), # noqa: E501 "Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2", v0_only=True), # noqa: E501
"GPT2ForSequenceClassification": _HfExamplesInfo("nie3e/sentiment-polish-gpt2-small"), # noqa: E501
"GritLM": _HfExamplesInfo("parasail-ai/GritLM-7B-vllm"), "GritLM": _HfExamplesInfo("parasail-ai/GritLM-7B-vllm"),
"GteModel": _HfExamplesInfo("Snowflake/snowflake-arctic-embed-m-v2.0", "GteModel": _HfExamplesInfo("Snowflake/snowflake-arctic-embed-m-v2.0",
trust_remote_code=True), trust_remote_code=True),

View File

@ -40,9 +40,11 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import ( from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding) ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors from vllm.sequence import IntermediateTensors, PoolerOutput
from ..layers.pooler import Pooler, PoolingType
from .interfaces import SupportsPP from .interfaces import SupportsPP
from .utils import (AutoWeightsLoader, is_pp_missing_parameter, from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers, make_empty_intermediate_tensors_factory, make_layers,
@ -318,6 +320,58 @@ class GPT2LMHeadModel(nn.Module, SupportsPP):
return loader.load_weights(weights) return loader.load_weights(weights)
class GPT2ForSequenceClassification(nn.Module):
"""GPT2 Model for sequence classification.
This class expands GPT2Model with pooling and score functions - last token
is being used for classification.
Attributes:
transformer: An instance of GPT2Model used for forward operations.
score: A layer for calculating logits.
_pooler: An instance of Pooler used for pooling operations.
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.transformer = GPT2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "gpt2"))
self.score = nn.Linear(config.n_embd, config.num_labels, bias=False)
pooler_config = vllm_config.model_config.pooler_config
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.LAST,
normalize=False,
softmax=True)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def pooler(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Optional[PoolerOutput]:
return self._pooler(hidden_states, pooling_metadata)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.transformer(
input_ids=input_ids,
position_ids=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors)
logits = self.score(hidden_states)
return logits
def _add_transformer_prefix( def _add_transformer_prefix(
weights: Iterable[tuple[str, torch.Tensor]] weights: Iterable[tuple[str, torch.Tensor]]
) -> Iterable[tuple[str, torch.Tensor]]: ) -> Iterable[tuple[str, torch.Tensor]]:

View File

@ -130,6 +130,7 @@ _EMBEDDING_MODELS = {
"DeciLMForCausalLM": ("nemotron_nas", "DeciLMForCausalLM"), "DeciLMForCausalLM": ("nemotron_nas", "DeciLMForCausalLM"),
"Gemma2Model": ("gemma2", "Gemma2ForCausalLM"), "Gemma2Model": ("gemma2", "Gemma2ForCausalLM"),
"GlmForCausalLM": ("glm", "GlmForCausalLM"), "GlmForCausalLM": ("glm", "GlmForCausalLM"),
"GPT2ForSequenceClassification": ("gpt2", "GPT2ForSequenceClassification"),
"GritLM": ("gritlm", "GritLM"), "GritLM": ("gritlm", "GritLM"),
"GteModel": ("bert_with_rope", "SnowflakeGteNewModel"), "GteModel": ("bert_with_rope", "SnowflakeGteNewModel"),
"GteNewModel": ("bert_with_rope", "GteNewModel"), "GteNewModel": ("bert_with_rope", "GteNewModel"),