[Model] FalconMamba Support (#9325)

This commit is contained in:
Dhia Eddine Rhaiem 2024-10-21 20:50:16 +04:00 committed by GitHub
parent 496e991da8
commit f6b97293aa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 35 additions and 12 deletions

View File

@ -87,6 +87,11 @@ Text Generation
- :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc. - :code:`tiiuae/falcon-7b`, :code:`tiiuae/falcon-40b`, :code:`tiiuae/falcon-rw-7b`, etc.
- -
- ✅︎ - ✅︎
* - :code:`FalconMambaForCausalLM`
- FalconMamba
- :code:`tiiuae/falcon-mamba-7b`, :code:`tiiuae/falcon-mamba-7b-instruct`, etc.
- ✅︎
-
* - :code:`GemmaForCausalLM` * - :code:`GemmaForCausalLM`
- Gemma - Gemma
- :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc. - :code:`google/gemma-2b`, :code:`google/gemma-7b`, etc.

View File

@ -10,7 +10,7 @@ from vllm.worker.model_runner import _get_graph_batch_size
from ...utils import check_outputs_equal from ...utils import check_outputs_equal
MODELS = ["state-spaces/mamba-130m-hf"] MODELS = ["state-spaces/mamba-130m-hf", "tiiuae/falcon-mamba-tiny-dev"]
# Use lower-level interfaces to create this greedy generator, as mamba will # Use lower-level interfaces to create this greedy generator, as mamba will

View File

@ -27,7 +27,6 @@ class RMSNorm(CustomOp):
self.variance_epsilon = eps self.variance_epsilon = eps
self.variance_size_override = (None if var_hidden_size == hidden_size self.variance_size_override = (None if var_hidden_size == hidden_size
else var_hidden_size) else var_hidden_size)
self.weight = nn.Parameter(torch.ones(hidden_size)) self.weight = nn.Parameter(torch.ones(hidden_size))
def forward_native( def forward_native(

View File

@ -22,7 +22,7 @@ from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig) QuantizationConfig)
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import ( from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding) DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import ( from vllm.model_executor.model_loader.weight_utils import (
composed_weight_loader, default_weight_loader, sharded_weight_loader) composed_weight_loader, default_weight_loader, sharded_weight_loader)
from vllm.model_executor.models.interfaces import (HasInnerState, from vllm.model_executor.models.interfaces import (HasInnerState,
@ -59,7 +59,7 @@ class MambaMixer(nn.Module):
self.conv_kernel_size = config.conv_kernel self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size self.intermediate_size = config.intermediate_size
self.time_step_rank = int(config.time_step_rank) self.time_step_rank = int(config.time_step_rank)
self.is_falcon_mamba = config.model_type == "falcon_mamba"
self.conv1d = ColumnParallelLinear( self.conv1d = ColumnParallelLinear(
input_size=self.conv_kernel_size, input_size=self.conv_kernel_size,
output_size=self.intermediate_size, output_size=self.intermediate_size,
@ -109,6 +109,13 @@ class MambaMixer(nn.Module):
input_is_parallel=True, input_is_parallel=True,
) )
self.activation = config.hidden_act self.activation = config.hidden_act
if self.is_falcon_mamba:
self.dt_layernorm = RMSNorm(self.time_step_rank,
eps=config.mixer_rms_eps)
self.b_layernorm = RMSNorm(self.ssm_state_size,
eps=config.mixer_rms_eps)
self.c_layernorm = RMSNorm(self.ssm_state_size,
eps=config.mixer_rms_eps)
def forward(self, hidden_states: torch.Tensor, def forward(self, hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata, attn_metadata: AttentionMetadata,
@ -158,8 +165,12 @@ class MambaMixer(nn.Module):
[self.time_step_rank, self.ssm_state_size, self.ssm_state_size], [self.time_step_rank, self.ssm_state_size, self.ssm_state_size],
dim=-1, dim=-1,
) )
# Note that Jamba and FalconMamba normalizes B, C, and time_step here
# Note that Jamba normalizes B, C, and time_step here but Mamba doesn't. # but Mamba doesn't.
if self.is_falcon_mamba:
time_step = self.dt_layernorm(time_step.contiguous())
B = self.b_layernorm(B.contiguous())
C = self.c_layernorm(C.contiguous())
discrete_time_step = self.dt_proj(time_step)[0].transpose(-2, -1) discrete_time_step = self.dt_proj(time_step)[0].transpose(-2, -1)
# 3.c perform the recurrence y ← SSM(A, B, C)(x) # 3.c perform the recurrence y ← SSM(A, B, C)(x)
@ -213,11 +224,9 @@ class MambaDecoderLayer(nn.Module):
super().__init__() super().__init__()
self.layer_idx = layer_idx self.layer_idx = layer_idx
self.config = config self.config = config
self.is_falcon_mamba = config.model_type == "falcon_mamba"
self.mixer = MambaMixer(config, layer_idx) self.mixer = MambaMixer(config, layer_idx)
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.pre_ff_layernorm = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
def forward( def forward(
self, self,
@ -319,8 +328,18 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
self.unpadded_vocab_size = config.vocab_size self.unpadded_vocab_size = config.vocab_size
if lora_config: if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
if config.tie_word_embeddings:
self.lm_head = self.backbone.embeddings self.lm_head = self.backbone.embeddings
else:
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
)
# Used to track and store by the Mamba cache between steps. # Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None self.mamba_cache: Optional[MambaCacheManager] = None
@ -398,7 +417,6 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
for name, loaded_weight in weights: for name, loaded_weight in weights:
if "A_log" in name: if "A_log" in name:
name = name.replace("A_log", "A") name = name.replace("A_log", "A")
# Skip loading extra bias for GPTQ models. # Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict: if name.endswith(".bias") and name not in params_dict:
continue continue

View File

@ -53,6 +53,7 @@ _TEXT_GENERATION_MODELS = {
# For decapoda-research/llama-* # For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"), "LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"MambaForCausalLM": ("mamba", "MambaForCausalLM"), "MambaForCausalLM": ("mamba", "MambaForCausalLM"),
"FalconMambaForCausalLM": ("mamba", "MambaForCausalLM"),
"MistralForCausalLM": ("llama", "LlamaForCausalLM"), "MistralForCausalLM": ("llama", "LlamaForCausalLM"),
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"), "MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"), "QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),