mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-24 03:14:28 +08:00
[Feature] Extend batch invariant torch.compile to B200 (#27856)
Signed-off-by: PaulZhang12 <paulzhan@fb.com>
This commit is contained in:
parent
40db194446
commit
faedbb4d4f
@ -456,7 +456,6 @@ def test_simple_generation(backend, monkeypatch: pytest.MonkeyPatch):
|
||||
model=model,
|
||||
max_num_seqs=1,
|
||||
tensor_parallel_size=int(os.getenv("VLLM_TP_SIZE", "1")),
|
||||
enforce_eager=True,
|
||||
gpu_memory_utilization=0.9,
|
||||
max_model_len=2048,
|
||||
dtype="bfloat16",
|
||||
@ -998,7 +997,6 @@ def LLM_with_max_seqs(
|
||||
dtype="bfloat16",
|
||||
tensor_parallel_size=int(os.getenv("VLLM_TP_SIZE", "1")),
|
||||
enable_prefix_caching=False,
|
||||
enforce_eager=True,
|
||||
# Enable for MOE models
|
||||
# enable_expert_parallel=True,
|
||||
)
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import contextlib
|
||||
import functools
|
||||
import os
|
||||
from collections import namedtuple
|
||||
from collections.abc import Callable
|
||||
@ -11,6 +10,7 @@ import torch
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.logger import init_logger
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.triton_utils import tl, triton
|
||||
from vllm.utils.torch_utils import is_torch_equal_or_newer
|
||||
|
||||
@ -737,11 +737,28 @@ def enable_batch_invariant_mode():
|
||||
|
||||
_batch_invariant_MODE = True
|
||||
_batch_invariant_LIB = torch.library.Library("aten", "IMPL")
|
||||
_batch_invariant_LIB.impl("aten::mm", mm_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::addmm", addmm_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::matmul", matmul_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::bmm", bmm_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::linear", linear_batch_invariant, "CUDA")
|
||||
|
||||
# Batch invariant matmuls are no longer needed after cublas overrides
|
||||
if not is_torch_equal_or_newer("2.10.0.dev"):
|
||||
if current_platform.is_device_capability(100):
|
||||
# For PyTorch 2.9, B200 uses GEMV for bs=1
|
||||
# Requires https://github.com/pytorch/pytorch/pull/166735
|
||||
_batch_invariant_LIB.impl("aten::mm", mm_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::addmm", addmm_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::matmul", matmul_batch_invariant, "CUDA")
|
||||
_batch_invariant_LIB.impl("aten::linear", linear_batch_invariant, "CUDA")
|
||||
else:
|
||||
# Only source of batch invariance for Hopper is split-k, can disable through
|
||||
# cuBLAS workspace config
|
||||
_original_cublas_workspace_cfg = os.environ.get(
|
||||
"CUBLAS_WORKSPACE_CONFIG", None
|
||||
)
|
||||
_original_cublaslt_workspace_size = os.environ.get(
|
||||
"CUBLASLT_WORKSPACE_SIZE", None
|
||||
)
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
os.environ["CUBLASLT_WORKSPACE_SIZE"] = "1"
|
||||
|
||||
_batch_invariant_LIB.impl(
|
||||
"aten::_log_softmax", _log_softmax_batch_invariant, "CUDA"
|
||||
)
|
||||
@ -750,6 +767,7 @@ def enable_batch_invariant_mode():
|
||||
_batch_invariant_LIB.impl("aten::mean.dim", mean_batch_invariant, "CUDA")
|
||||
|
||||
# Also monkeypatch torch.bmm directly as a fallback
|
||||
_batch_invariant_LIB.impl("aten::bmm", bmm_batch_invariant, "CUDA")
|
||||
_original_torch_bmm = torch.bmm
|
||||
torch.bmm = bmm_batch_invariant
|
||||
|
||||
@ -771,14 +789,6 @@ def enable_batch_invariant_mode():
|
||||
)
|
||||
torch.backends.cuda.preferred_blas_library(backend="cublaslt")
|
||||
|
||||
if not is_torch_equal_or_newer("2.10.0.dev"):
|
||||
_original_cublas_workspace_cfg = os.environ.get("CUBLAS_WORKSPACE_CONFIG", None)
|
||||
_original_cublaslt_workspace_size = os.environ.get(
|
||||
"CUBLASLT_WORKSPACE_SIZE", None
|
||||
)
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
os.environ["CUBLASLT_WORKSPACE_SIZE"] = "1"
|
||||
|
||||
|
||||
def disable_batch_invariant_mode():
|
||||
global _batch_invariant_MODE, _batch_invariant_LIB, _original_torch_bmm
|
||||
@ -847,7 +857,6 @@ def get_batch_invariant_attention_block_size() -> AttentionBlockSize:
|
||||
return AttentionBlockSize(block_m=16, block_n=16)
|
||||
|
||||
|
||||
@functools.cache
|
||||
def vllm_is_batch_invariant():
|
||||
env_key = "VLLM_BATCH_INVARIANT"
|
||||
is_overridden = False
|
||||
|
||||
@ -19,6 +19,9 @@ import torch
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.batch_invariant import (
|
||||
vllm_is_batch_invariant,
|
||||
)
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
logger = init_logger(__name__)
|
||||
@ -222,6 +225,9 @@ def force_use_trtllm_attention() -> bool | None:
|
||||
return `True` if TRTLLM attention is forced to be used,
|
||||
return `False` if TRTLLM attention is forced to be not used.
|
||||
"""
|
||||
if vllm_is_batch_invariant():
|
||||
logger.info_once("VLLM_USE_TRTLLM_ATTENTION is disabled for batch-invariant")
|
||||
return False
|
||||
return _force_use_trtllm_attention(envs.VLLM_USE_TRTLLM_ATTENTION)
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user