wang.yuqi 1ff67df182
[CI] Reorganization pooling_mteb_test (#31265)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-12-24 23:36:20 +08:00

119 lines
3.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from tests.models.language.pooling.embed_utils import correctness_test_embed_models
from tests.models.utils import (
EmbedModelInfo,
RerankModelInfo,
)
from .mteb_embed_utils import mteb_test_embed_models
from .mteb_score_utils import mteb_test_rerank_models
MODELS = [
########## BertModel
EmbedModelInfo(
"BAAI/bge-base-en",
architecture="BertModel",
mteb_score=0.779336792,
pooling_type="CLS",
attn_type="encoder_only",
is_prefix_caching_supported=False,
is_chunked_prefill_supported=False,
enable_test=True,
),
EmbedModelInfo("BAAI/bge-base-zh", architecture="BertModel", enable_test=False),
EmbedModelInfo("BAAI/bge-small-en", architecture="BertModel", enable_test=False),
EmbedModelInfo("BAAI/bge-small-zh", architecture="BertModel", enable_test=False),
EmbedModelInfo("BAAI/bge-large-en", architecture="BertModel", enable_test=False),
EmbedModelInfo("BAAI/bge-large-zh", architecture="BertModel", enable_test=False),
EmbedModelInfo(
"BAAI/bge-large-zh-noinstruct", architecture="BertModel", enable_test=False
),
EmbedModelInfo(
"BAAI/bge-base-en-v1.5", architecture="BertModel", enable_test=False
),
EmbedModelInfo(
"BAAI/bge-base-zh-v1.5", architecture="BertModel", enable_test=False
),
EmbedModelInfo(
"BAAI/bge-small-en-v1.5", architecture="BertModel", enable_test=False
),
EmbedModelInfo(
"BAAI/bge-small-zh-v1.5", architecture="BertModel", enable_test=False
),
EmbedModelInfo(
"BAAI/bge-large-en-v1.5", architecture="BertModel", enable_test=False
),
EmbedModelInfo(
"BAAI/bge-large-zh-v1.5", architecture="BertModel", enable_test=False
),
########## XLMRobertaModel
EmbedModelInfo(
"BAAI/bge-m3",
architecture="XLMRobertaModel",
mteb_score=0.787343078,
pooling_type="CLS",
attn_type="encoder_only",
is_prefix_caching_supported=False,
is_chunked_prefill_supported=False,
enable_test=True,
),
########## Qwen2Model
EmbedModelInfo(
"BAAI/bge-code-v1",
architecture="Qwen2Model",
mteb_score=0.75724465,
dtype="float32",
pooling_type="LAST",
attn_type="decoder",
is_prefix_caching_supported=True,
is_chunked_prefill_supported=True,
enable_test=True,
),
]
RERANK_MODELS = [
########## XLMRobertaForSequenceClassification
RerankModelInfo(
"BAAI/bge-reranker-base",
architecture="XLMRobertaForSequenceClassification",
mteb_score=0.32398,
pooling_type="CLS",
attn_type="encoder_only",
is_prefix_caching_supported=False,
is_chunked_prefill_supported=False,
enable_test=True,
),
RerankModelInfo(
"BAAI/bge-reranker-large",
architecture="XLMRobertaForSequenceClassification",
enable_test=False,
),
RerankModelInfo(
"BAAI/bge-reranker-v2-m3",
architecture="XLMRobertaForSequenceClassification",
enable_test=False,
),
]
@pytest.mark.parametrize("model_info", MODELS)
def test_embed_models_mteb(hf_runner, vllm_runner, model_info: EmbedModelInfo) -> None:
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
@pytest.mark.parametrize("model_info", MODELS)
def test_embed_models_correctness(
hf_runner, vllm_runner, model_info: EmbedModelInfo, example_prompts
) -> None:
correctness_test_embed_models(hf_runner, vllm_runner, model_info, example_prompts)
@pytest.mark.parametrize("model_info", RERANK_MODELS)
def test_rerank_models_mteb(
hf_runner, vllm_runner, model_info: RerankModelInfo
) -> None:
mteb_test_rerank_models(hf_runner, vllm_runner, model_info)