4.8 KiB
Prompt Embedding Inputs
This page teaches you how to pass prompt embedding inputs to vLLM.
What are prompt embeddings?
The traditional flow of text data for a Large Language Model goes from text to token ids (via a tokenizer) then from token ids to prompt embeddings. For a traditional decoder-only model (such as meta-llama/Llama-3.1-8B-Instruct), this step of converting token ids to prompt embeddings happens via a look-up from a learned embedding matrix, but the model is not limited to processing only the embeddings corresponding to its token vocabulary.
:::{note} Prompt embeddings are currently only supported in the v0 engine. :::
Offline Inference
To input multi-modal data, follow this schema in {class}vllm.inputs.EmbedsPrompt:
prompt_embeds: A torch tensor representing a sequence of prompt/token embeddings. This has the shape (sequence_length, hidden_size), where sequence length is the number of tokens embeddings and hidden_size is the hidden size (embedding size) of the model.
Hugging Face Transformers Inputs
You can pass prompt embeddings from Hugging Face Transformers models to the 'prompt_embeds' field of the prompt embedding dictionary, as shown in the following examples:
from vllm import LLM
import transformers
model_name = "meta-llama/Llama-3.2-1B-Instruct"
# Transformers
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
transformers_model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
llm = LLM(model=model_name, enable_prompt_embeds=True)
# Refer to the HuggingFace repo for the correct format to use
chat = [{"role": "user", "content": "Please tell me about the capital of France."}]
token_ids = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors='pt')
embedding_layer = transformers_model.get_input_embeddings()
prompt_embeds = embedding_layer(token_ids).squeeze(0)
# Single prompt inference
outputs = llm.generate({
"prompt_embeds": prompt_embeds,
})
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
# Batch inference
chats = [
[{"role": "user", "content": "Please tell me about the capital of France."}],
[{"role": "user", "content": "When is the day longest during the year?"}],
[{"role": "user", "content": "Where is bigger, the moon or the sun?"}]
]
token_ids_list = [
tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors='pt') for chat in chats
]
prompt_embeds_list = [embedding_layer(token_ids).squeeze(0) for token_ids in token_ids_list]
outputs = llm.generate(
[
{
"prompt_embeds": prompt_embeds,
} for prompt_embeds in prompt_embeds_list
]
)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
Online Serving
Our OpenAI-compatible server accepts prompt embeddings inputs via the Completions API. Prompt embeddings inputs are added via a new 'prompt_embeds' key in the JSON package.
When a mixture of 'prompt_embeds' and 'prompt' inputs are provided in a single request, the prompt embeds are always returned first.
Prompt embeddings are passed in as base64 encoded torch tensors.
Transformers Inputs via OpenAI Client
First, launch the OpenAI-compatible server:
vllm serve meta-llama/Llama-3.2-1B-Instruct --task generate \
--max-model-len 4096 --enable-prompt-embeds
Then, you can use the OpenAI client as follows:
from openai import OpenAI
import transformers
import torch
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model_name = "meta-llama/Llama-3.2-1B-Instruct"
# Transformers
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
transformers_model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
# Refer to the HuggingFace repo for the correct format to use
chat = [{"role": "user", "content": "Please tell me about the capital of France."}]
token_ids = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors='pt')
embedding_layer = transformers_model.get_input_embeddings()
prompt_embeds = embedding_layer(token_ids).squeeze(0)
# Prompt embeddings
buffer = io.BytesIO()
torch.save(prompt_embeds, buffer)
buffer.seek(0)
binary_data = buffer.read()
encoded_embeds = base64.b64encode(binary_data).decode('utf-8')
completion = client_with_prompt_embeds.completions.create(
model=model_name,
# NOTE: The OpenAI client does not allow `None` as an input to
# `prompt`. Use an empty string if you have no text prompts.
prompt="",
max_tokens=5,
temperature=0.0,
# NOTE: The OpenAI client allows passing in extra JSON body via the
# `extra_body` argument.
extra_body={"prompt_embeds": encoded_embeds}
)
print(completion.choices[0].text)