mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 18:45:01 +08:00
18 lines
1.3 KiB
Markdown
18 lines
1.3 KiB
Markdown
# Anyscale
|
|
|
|
[](){ #deployment-anyscale }
|
|
|
|
[Anyscale](https://www.anyscale.com) is a managed, multi-cloud platform developed by the creators of Ray.
|
|
|
|
Anyscale automates the entire lifecycle of Ray clusters in your AWS, GCP, or Azure account, delivering the flexibility of open-source Ray
|
|
without the operational overhead of maintaining Kubernetes control planes, configuring autoscalers, managing observability stacks, or manually managing head and worker nodes with helper scripts like <gh-file:examples/online_serving/run_cluster.sh>.
|
|
|
|
When serving large language models with vLLM, Anyscale can rapidly provision [production-ready HTTPS endpoints](https://docs.anyscale.com/examples/deploy-ray-serve-llms) or [fault-tolerant batch inference jobs](https://docs.anyscale.com/examples/ray-data-llm).
|
|
|
|
## Production-ready vLLM on Anyscale quickstarts
|
|
|
|
- [Offline batch inference](https://console.anyscale.com/template-preview/llm_batch_inference?utm_source=vllm_docs)
|
|
- [Deploy vLLM services](https://console.anyscale.com/template-preview/llm_serving?utm_source=vllm_docs)
|
|
- [Curate a dataset](https://console.anyscale.com/template-preview/audio-dataset-curation-llm-judge?utm_source=vllm_docs)
|
|
- [Finetune an LLM](https://console.anyscale.com/template-preview/entity-recognition-with-llms?utm_source=vllm_docs)
|