Harry Mellor 4ffd6e8942
[Docs] Reduce custom syntax used in docs (#27009)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-16 20:05:34 -07:00

97 lines
2.9 KiB
Markdown

# --8<-- [start:installation]
vLLM has been adapted to work on ARM64 CPUs with NEON support, leveraging the CPU backend initially developed for the x86 platform.
ARM CPU backend currently supports Float32, FP16 and BFloat16 datatypes.
!!! warning
There are no pre-built wheels or images for this device, so you must build vLLM from source.
# --8<-- [end:installation]
# --8<-- [start:requirements]
- OS: Linux
- Compiler: `gcc/g++ >= 12.3.0` (optional, recommended)
- Instruction Set Architecture (ISA): NEON support is required
# --8<-- [end:requirements]
# --8<-- [start:set-up-using-python]
# --8<-- [end:set-up-using-python]
# --8<-- [start:pre-built-wheels]
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
First, install the recommended compiler. We recommend using `gcc/g++ >= 12.3.0` as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
```bash
sudo apt-get update -y
sudo apt-get install -y --no-install-recommends ccache git curl wget ca-certificates gcc-12 g++-12 libtcmalloc-minimal4 libnuma-dev ffmpeg libsm6 libxext6 libgl1 jq lsof
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
```
Second, clone the vLLM project:
```bash
git clone https://github.com/vllm-project/vllm.git vllm_source
cd vllm_source
```
Third, install required dependencies:
```bash
uv pip install -r requirements/cpu-build.txt --torch-backend cpu
uv pip install -r requirements/cpu.txt --torch-backend cpu
```
??? console "pip"
```bash
pip install --upgrade pip
pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu
pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
```
Finally, build and install vLLM:
```bash
VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation
```
If you want to develop vLLM, install it in editable mode instead.
```bash
VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation
```
Testing has been conducted on AWS Graviton3 instances for compatibility.
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
# --8<-- [end:pre-built-images]
# --8<-- [start:build-image-from-source]
```bash
docker build -f docker/Dockerfile.cpu \
--tag vllm-cpu-env .
# Launching OpenAI server
docker run --rm \
--privileged=true \
--shm-size=4g \
-p 8000:8000 \
-e VLLM_CPU_KVCACHE_SPACE=<KV cache space> \
-e VLLM_CPU_OMP_THREADS_BIND=<CPU cores for inference> \
vllm-cpu-env \
--model=meta-llama/Llama-3.2-1B-Instruct \
--dtype=bfloat16 \
other vLLM OpenAI server arguments
```
!!! tip
An alternative of `--privileged=true` is `--cap-add SYS_NICE --security-opt seccomp=unconfined`.
# --8<-- [end:build-image-from-source]
# --8<-- [start:extra-information]
# --8<-- [end:extra-information]