vllm/tests/models/multimodal/generation/test_audioflamingo3.py
Lasha Koroshinadze 3a20450d31
Add AudioFlamingo3 model support (#30539)
Signed-off-by: Lasha <26011196+lashahub@users.noreply.github.com>
Signed-off-by: Lasha Koroshinadze <26011196+lashahub@users.noreply.github.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-12-14 02:14:55 -08:00

143 lines
4.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The vLLM team.
# Copyright 2025 NVIDIA CORPORATION and the HuggingFace Inc. team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import pytest
from tests.models.registry import HF_EXAMPLE_MODELS
from vllm import LLM, SamplingParams
MODEL_NAME = "nvidia/audio-flamingo-3-hf"
def get_fixture_path(filename):
return os.path.join(
os.path.dirname(__file__), "../../fixtures/audioflamingo3", filename
)
@pytest.fixture(scope="module")
def llm():
# Check if the model is supported by the current transformers version
model_info = HF_EXAMPLE_MODELS.get_hf_info("AudioFlamingo3ForConditionalGeneration")
model_info.check_transformers_version(on_fail="skip")
try:
llm = LLM(
model=MODEL_NAME,
trust_remote_code=True,
dtype="bfloat16",
enforce_eager=True,
limit_mm_per_prompt={"audio": 1},
)
return llm
except Exception as e:
pytest.skip(f"Failed to load model {MODEL_NAME}: {e}")
def test_single_generation(llm):
fixture_path = get_fixture_path("expected_results_single.json")
if not os.path.exists(fixture_path):
pytest.skip(f"Fixture not found: {fixture_path}")
with open(fixture_path) as f:
expected = json.load(f)
audio_url = "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/Why_do_we_ask_questions_converted.wav"
messages = [
{
"role": "user",
"content": [
{"type": "audio_url", "audio_url": {"url": audio_url}},
{"type": "text", "text": "Transcribe the input speech."},
],
}
]
sampling_params = SamplingParams(temperature=0.0, max_tokens=128)
outputs = llm.chat(
messages=messages,
sampling_params=sampling_params,
)
generated_text = outputs[0].outputs[0].text.strip()
expected_text = expected["transcriptions"][0]
assert expected_text in generated_text or generated_text in expected_text
def test_batched_generation(llm):
fixture_path = get_fixture_path("expected_results_batched.json")
if not os.path.exists(fixture_path):
pytest.skip(f"Fixture not found: {fixture_path}")
with open(fixture_path) as f:
expected = json.load(f)
items = [
{
"audio_url": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/dogs_barking_in_sync_with_the_music.wav",
"question": "What is surprising about the relationship "
"between the barking and the music?",
"expected_idx": 0,
},
{
"audio_url": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/Ch6Ae9DT6Ko_00-04-03_00-04-31.wav",
"question": (
"Why is the philosopher's name mentioned in the lyrics? "
"(A) To express a sense of nostalgia "
"(B) To indicate that language cannot express clearly, "
"satirizing the inversion of black and white in the world "
"(C) To add depth and complexity to the lyrics "
"(D) To showcase the wisdom and influence of the philosopher"
),
"expected_idx": 1,
},
]
conversations = []
for item in items:
messages = [
{
"role": "user",
"content": [
{"type": "audio_url", "audio_url": {"url": item["audio_url"]}},
{"type": "text", "text": item["question"]},
],
}
]
conversations.append(messages)
sampling_params = SamplingParams(temperature=0.0, max_tokens=128)
outputs = llm.chat(
messages=conversations,
sampling_params=sampling_params,
)
for i, output in enumerate(outputs):
generated_text = output.outputs[0].text.strip()
expected_text = expected["transcriptions"][i]
assert expected_text in generated_text or generated_text in expected_text