mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-24 07:35:01 +08:00
Signed-off-by: Lasha <26011196+lashahub@users.noreply.github.com> Signed-off-by: Lasha Koroshinadze <26011196+lashahub@users.noreply.github.com> Co-authored-by: Isotr0py <2037008807@qq.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
143 lines
4.6 KiB
Python
143 lines
4.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2025 The vLLM team.
|
|
# Copyright 2025 NVIDIA CORPORATION and the HuggingFace Inc. team. All rights
|
|
# reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
|
|
import pytest
|
|
|
|
from tests.models.registry import HF_EXAMPLE_MODELS
|
|
from vllm import LLM, SamplingParams
|
|
|
|
MODEL_NAME = "nvidia/audio-flamingo-3-hf"
|
|
|
|
|
|
def get_fixture_path(filename):
|
|
return os.path.join(
|
|
os.path.dirname(__file__), "../../fixtures/audioflamingo3", filename
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def llm():
|
|
# Check if the model is supported by the current transformers version
|
|
model_info = HF_EXAMPLE_MODELS.get_hf_info("AudioFlamingo3ForConditionalGeneration")
|
|
model_info.check_transformers_version(on_fail="skip")
|
|
|
|
try:
|
|
llm = LLM(
|
|
model=MODEL_NAME,
|
|
trust_remote_code=True,
|
|
dtype="bfloat16",
|
|
enforce_eager=True,
|
|
limit_mm_per_prompt={"audio": 1},
|
|
)
|
|
return llm
|
|
except Exception as e:
|
|
pytest.skip(f"Failed to load model {MODEL_NAME}: {e}")
|
|
|
|
|
|
def test_single_generation(llm):
|
|
fixture_path = get_fixture_path("expected_results_single.json")
|
|
if not os.path.exists(fixture_path):
|
|
pytest.skip(f"Fixture not found: {fixture_path}")
|
|
|
|
with open(fixture_path) as f:
|
|
expected = json.load(f)
|
|
|
|
audio_url = "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/Why_do_we_ask_questions_converted.wav"
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "audio_url", "audio_url": {"url": audio_url}},
|
|
{"type": "text", "text": "Transcribe the input speech."},
|
|
],
|
|
}
|
|
]
|
|
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=128)
|
|
|
|
outputs = llm.chat(
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
)
|
|
generated_text = outputs[0].outputs[0].text.strip()
|
|
|
|
expected_text = expected["transcriptions"][0]
|
|
|
|
assert expected_text in generated_text or generated_text in expected_text
|
|
|
|
|
|
def test_batched_generation(llm):
|
|
fixture_path = get_fixture_path("expected_results_batched.json")
|
|
if not os.path.exists(fixture_path):
|
|
pytest.skip(f"Fixture not found: {fixture_path}")
|
|
|
|
with open(fixture_path) as f:
|
|
expected = json.load(f)
|
|
|
|
items = [
|
|
{
|
|
"audio_url": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/dogs_barking_in_sync_with_the_music.wav",
|
|
"question": "What is surprising about the relationship "
|
|
"between the barking and the music?",
|
|
"expected_idx": 0,
|
|
},
|
|
{
|
|
"audio_url": "https://huggingface.co/datasets/nvidia/AudioSkills/resolve/main/assets/Ch6Ae9DT6Ko_00-04-03_00-04-31.wav",
|
|
"question": (
|
|
"Why is the philosopher's name mentioned in the lyrics? "
|
|
"(A) To express a sense of nostalgia "
|
|
"(B) To indicate that language cannot express clearly, "
|
|
"satirizing the inversion of black and white in the world "
|
|
"(C) To add depth and complexity to the lyrics "
|
|
"(D) To showcase the wisdom and influence of the philosopher"
|
|
),
|
|
"expected_idx": 1,
|
|
},
|
|
]
|
|
|
|
conversations = []
|
|
for item in items:
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "audio_url", "audio_url": {"url": item["audio_url"]}},
|
|
{"type": "text", "text": item["question"]},
|
|
],
|
|
}
|
|
]
|
|
conversations.append(messages)
|
|
|
|
sampling_params = SamplingParams(temperature=0.0, max_tokens=128)
|
|
|
|
outputs = llm.chat(
|
|
messages=conversations,
|
|
sampling_params=sampling_params,
|
|
)
|
|
|
|
for i, output in enumerate(outputs):
|
|
generated_text = output.outputs[0].text.strip()
|
|
expected_text = expected["transcriptions"][i]
|
|
|
|
assert expected_text in generated_text or generated_text in expected_text
|