vllm/vllm/platforms/rocm.py
wangxiyuan 2dacd57394
[platform] Move get_cu_count to utils (#27005)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-11-13 08:48:47 +08:00

466 lines
16 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from functools import cache, lru_cache, wraps
from typing import TYPE_CHECKING
import torch
import vllm.envs as envs
from vllm.logger import init_logger
from vllm.utils.torch_utils import cuda_device_count_stateless
from .interface import DeviceCapability, Platform, PlatformEnum
if TYPE_CHECKING:
from vllm.attention.backends.registry import AttentionBackendEnum
from vllm.config import VllmConfig
else:
AttentionBackendEnum = None
logger = init_logger(__name__)
try:
from amdsmi import (
AmdSmiException,
amdsmi_get_gpu_asic_info,
amdsmi_get_processor_handles,
amdsmi_init,
amdsmi_shut_down,
amdsmi_topo_get_link_type,
)
except ImportError as e:
logger.warning("Failed to import from amdsmi with %r", e)
try:
import vllm._C # noqa: F401
except ImportError as e:
logger.warning("Failed to import from vllm._C with %r", e)
# import custom ops, trigger op registration
try:
import vllm._rocm_C # noqa: F401
except ImportError as e:
logger.warning("Failed to import from vllm._rocm_C with %r", e)
# Models not supported by ROCm.
_ROCM_UNSUPPORTED_MODELS: list[str] = []
# Models partially supported by ROCm.
# Architecture -> Reason.
_ROCM_SWA_REASON = ()
_ROCM_PARTIALLY_SUPPORTED_MODELS: dict[str, str] = {}
_ROCM_DEVICE_ID_NAME_MAP: dict[str, str] = {
"0x74a0": "AMD_Instinct_MI300A",
"0x74a1": "AMD_Instinct_MI300X",
"0x74b5": "AMD_Instinct_MI300X", # MI300X VF
"0x74a2": "AMD_Instinct_MI308X",
"0x74a5": "AMD_Instinct_MI325X",
"0x74b9": "AMD_Instinct_MI325X", # MI325X VF
"0x74a9": "AMD_Instinct_MI300X_HF",
"0x74bd": "AMD_Instinct_MI300X_HF",
"0x744c": "AMD_Radeon_RX7900XTX",
}
# Prevent use of clashing `{CUDA/HIP}_VISIBLE_DEVICES`
if "HIP_VISIBLE_DEVICES" in os.environ:
val = os.environ["HIP_VISIBLE_DEVICES"]
if cuda_val := os.environ.get("CUDA_VISIBLE_DEVICES", None):
assert val == cuda_val
else:
os.environ["CUDA_VISIBLE_DEVICES"] = val
# AMDSMI utils
# Note that NVML is not affected by `{CUDA/HIP}_VISIBLE_DEVICES`,
# all the related functions work on real physical device ids.
# the major benefit of using AMDSMI is that it will not initialize CUDA
def with_amdsmi_context(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
amdsmi_init()
try:
return fn(*args, **kwargs)
finally:
amdsmi_shut_down()
return wrapper
@cache
def on_gfx1x() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx11", "gfx12"])
@cache
def on_mi3xx() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx942", "gfx950"])
@cache
def on_gfx9() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx90a", "gfx942", "gfx950"])
@cache
def on_gfx950() -> bool:
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
return any(arch in GPU_ARCH for arch in ["gfx950"])
@cache
def use_rocm_custom_paged_attention(
qtype: torch.dtype,
head_size: int,
block_size: int,
gqa_ratio: int,
max_seq_len: int,
sliding_window: int,
kv_cache_dtype: str,
alibi_slopes: torch.Tensor | None = None,
sinks: torch.Tensor | None = None,
) -> bool:
from vllm._aiter_ops import rocm_aiter_ops
GPU_ARCH = torch.cuda.get_device_properties("cuda").gcnArchName
ON_GFX9 = any(arch in GPU_ARCH for arch in ["gfx90a", "gfx942", "gfx950"])
ON_GFX11_GFX12 = any(arch in GPU_ARCH for arch in ["gfx11", "gfx12"])
# custom paged attn always supported on V0. On V1, requires sliding window
# disabled due to observed numerical discrepancy.
if ON_GFX9:
return (
(sliding_window == 0 or sliding_window == (-1, -1))
and (qtype == torch.half or qtype == torch.bfloat16)
and (head_size == 64 or head_size == 128)
and (block_size == 16 or block_size == 32)
and (gqa_ratio >= 1 and gqa_ratio <= 16)
and max_seq_len <= 128 * 1024
and (envs.VLLM_ROCM_CUSTOM_PAGED_ATTN)
and not (rocm_aiter_ops.is_pa_attn_enabled())
and sinks is None
)
else:
return (
ON_GFX11_GFX12
and (sliding_window == 0 or sliding_window == (-1, -1))
and (qtype == torch.half or qtype == torch.bfloat16)
and head_size == 128
and block_size == 16
and (gqa_ratio >= 3 and gqa_ratio <= 16)
and max_seq_len <= 128 * 1024
and alibi_slopes is None
and kv_cache_dtype == "auto"
and envs.VLLM_ROCM_CUSTOM_PAGED_ATTN
and sinks is None
)
class RocmPlatform(Platform):
_enum = PlatformEnum.ROCM
device_name: str = "rocm"
device_type: str = "cuda"
dispatch_key: str = "CUDA"
ray_device_key: str = "GPU"
dist_backend: str = "nccl"
# rocm shares the same device control env var as CUDA
device_control_env_var: str = "CUDA_VISIBLE_DEVICES"
supported_quantization: list[str] = [
"awq",
"gptq",
"fp8",
"compressed-tensors",
"fbgemm_fp8",
"gguf",
"quark",
"ptpc_fp8",
"mxfp4",
"petit_nvfp4",
"torchao",
]
@classmethod
def get_vit_attn_backend(
cls, head_size: int, dtype: torch.dtype
) -> AttentionBackendEnum:
from importlib.util import find_spec
from vllm._aiter_ops import rocm_aiter_ops
from vllm.attention.backends.registry import AttentionBackendEnum
if rocm_aiter_ops.is_mha_enabled():
# Note: AITER FA is only supported for Qwen-VL models.
# TODO: Add support for other VL models in their model class.
return AttentionBackendEnum.ROCM_AITER_FA
if on_gfx9() and find_spec("flash_attn") is not None:
return AttentionBackendEnum.FLASH_ATTN
return AttentionBackendEnum.TORCH_SDPA
@classmethod
def get_attn_backend_cls(
cls,
selected_backend,
head_size,
dtype,
kv_cache_dtype,
block_size,
use_mla,
has_sink,
use_sparse,
) -> str:
from vllm._aiter_ops import rocm_aiter_ops
from vllm.attention.backends.registry import AttentionBackendEnum
if use_sparse:
raise NotImplementedError("Sparse Attention is not supported on ROCm.")
if use_mla:
if selected_backend is None:
selected_backend = (
AttentionBackendEnum.ROCM_AITER_MLA
if rocm_aiter_ops.is_mla_enabled() or block_size == 1
else AttentionBackendEnum.TRITON_MLA
)
if selected_backend == AttentionBackendEnum.TRITON_MLA:
if block_size != 1:
logger.info_once("Using Triton MLA backend.")
return AttentionBackendEnum.TRITON_MLA.get_path()
raise ValueError(
f" The selected backend, {selected_backend.name},"
f"does not support block size {block_size}."
)
if selected_backend == AttentionBackendEnum.ROCM_AITER_MLA:
logger.info("Using AITER MLA backend.")
return AttentionBackendEnum.ROCM_AITER_MLA.get_path()
raise ValueError(
f" The selected backend, {selected_backend.name},"
f"is not MLA type while requested for MLA backend."
)
if selected_backend == AttentionBackendEnum.FLEX_ATTENTION:
logger.info("Using FlexAttention backend.")
return "vllm.v1.attention.backends.flex_attention.FlexAttentionBackend"
if (
rocm_aiter_ops.is_mha_enabled()
) or selected_backend == AttentionBackendEnum.ROCM_AITER_FA:
logger.info("Using Aiter Flash Attention backend.")
return AttentionBackendEnum.ROCM_AITER_FA.get_path()
if (
rocm_aiter_ops.is_triton_unified_attn_enabled()
) or selected_backend == AttentionBackendEnum.ROCM_AITER_UNIFIED_ATTN:
logger.info("Using Aiter Unified Attention backend.")
return AttentionBackendEnum.ROCM_AITER_UNIFIED_ATTN.get_path()
if (
envs.VLLM_V1_USE_PREFILL_DECODE_ATTENTION
or selected_backend == AttentionBackendEnum.ROCM_ATTN
):
# rocm specific backend, with aiter and/or
# triton prefix-prefill
logger.info("Using Rocm Attention backend.")
return AttentionBackendEnum.ROCM_ATTN.get_path()
# default case, using triton unified attention
logger.info("Using Triton Attention backend.")
return AttentionBackendEnum.TRITON_ATTN.get_path()
@classmethod
def set_device(cls, device: torch.device) -> None:
"""
Set the device for the current platform.
"""
torch.cuda.set_device(device)
@classmethod
@lru_cache(maxsize=8)
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability | None:
major, minor = torch.cuda.get_device_capability(device_id)
return DeviceCapability(major=major, minor=minor)
@classmethod
@with_amdsmi_context
def is_fully_connected(cls, physical_device_ids: list[int]) -> bool:
"""
Query if the set of gpus are fully connected by xgmi (1 hop)
"""
handles = [amdsmi_get_processor_handles()[i] for i in physical_device_ids]
for i, handle in enumerate(handles):
for j, peer_handle in enumerate(handles):
if i < j:
try:
link_type = amdsmi_topo_get_link_type(handle, peer_handle)
# type is 2 for XGMI
if link_type["hops"] != 1 or link_type["type"] != 2:
return False
except AmdSmiException as error:
logger.error("AMD 1 hop XGMI detection failed.", exc_info=error)
return False
return True
@classmethod
@with_amdsmi_context
@lru_cache(maxsize=8)
def get_device_name(cls, device_id: int = 0) -> str:
physical_device_id = cls.device_id_to_physical_device_id(device_id)
handle = amdsmi_get_processor_handles()[physical_device_id]
asic_info = amdsmi_get_gpu_asic_info(handle)
device_name: str = asic_info["device_id"]
if device_name in _ROCM_DEVICE_ID_NAME_MAP:
return _ROCM_DEVICE_ID_NAME_MAP[device_name]
return asic_info["market_name"]
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
device_props = torch.cuda.get_device_properties(device_id)
return device_props.total_memory
@classmethod
def check_and_update_config(cls, vllm_config: "VllmConfig") -> None:
from vllm._aiter_ops import rocm_aiter_ops
from vllm.config.compilation import CUDAGraphMode
cache_config = vllm_config.cache_config
compilation_config = vllm_config.compilation_config
parallel_config = vllm_config.parallel_config
is_eager_execution = compilation_config == CUDAGraphMode.NONE
use_aiter_rms_norm = rocm_aiter_ops.is_rmsnorm_enabled()
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
if parallel_config.worker_cls == "auto":
parallel_config.worker_cls = "vllm.v1.worker.gpu_worker.Worker"
# Aiter rms norm perform best when CUDA Graph capture is enabled.
if (
use_aiter_rms_norm
and not is_eager_execution
and "-rms_norm" not in compilation_config.custom_ops
):
compilation_config.custom_ops.append("+rms_norm")
@classmethod
def verify_model_arch(cls, model_arch: str) -> None:
if model_arch in _ROCM_UNSUPPORTED_MODELS:
raise ValueError(
f"Model architecture '{model_arch}' is not supported by ROCm for now."
)
if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS:
msg = _ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch]
logger.warning(
"Model architecture '%s' is partially supported by ROCm: %s",
model_arch,
msg,
)
@classmethod
def verify_quantization(cls, quant: str) -> None:
super().verify_quantization(quant)
if quant == "awq" and not envs.VLLM_USE_TRITON_AWQ:
logger.warning(
"Using AWQ quantization with ROCm, but VLLM_USE_TRITON_AWQ"
" is not set, enabling VLLM_USE_TRITON_AWQ."
)
os.environ["VLLM_USE_TRITON_AWQ"] = "1"
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"
@classmethod
def get_current_memory_usage(
cls, device: torch.types.Device | None = None
) -> float:
torch.cuda.reset_peak_memory_stats(device)
return torch.cuda.mem_get_info(device)[1] - torch.cuda.mem_get_info(device)[0]
@classmethod
def get_device_communicator_cls(cls) -> str:
return (
"vllm.distributed.device_communicators.cuda_communicator.CudaCommunicator" # noqa
)
@classmethod
def supports_mx(cls) -> bool:
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
return any(gfx in gcn_arch for gfx in ["gfx95"])
@classmethod
def supports_fp8(cls) -> bool:
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
return any(gfx in gcn_arch for gfx in ["gfx94", "gfx95", "gfx12"])
@classmethod
def is_fp8_fnuz(cls) -> bool:
# only device 0 is checked, this assumes MI300 platforms are homogeneous
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
@classmethod
def fp8_dtype(cls) -> torch.dtype:
if cls.is_fp8_fnuz():
return torch.float8_e4m3fnuz
else:
return torch.float8_e4m3fn
@classmethod
def use_custom_allreduce(cls) -> bool:
# We only enable custom allreduce for MI300 series
gcn_arch = torch.cuda.get_device_properties(0).gcnArchName
supported_archs = ["gfx94", "gfx95"]
return any(gfx in gcn_arch for gfx in supported_archs)
@classmethod
def opaque_attention_op(cls) -> bool:
return True
@classmethod
def is_navi(cls) -> bool:
return "gfx1" in torch.cuda.get_device_properties(0).gcnArchName
@classmethod
def get_static_graph_wrapper_cls(cls) -> str:
return "vllm.compilation.cuda_graph.CUDAGraphWrapper"
@classmethod
def device_count(cls) -> int:
return cuda_device_count_stateless()
@classmethod
def check_if_supports_dtype(cls, dtype: torch.dtype):
if dtype == torch.bfloat16: # noqa: SIM102
if not cls.has_device_capability(80):
capability = cls.get_device_capability()
gpu_name = cls.get_device_name()
if capability is None:
compute_str = "does not have a compute capability"
else:
version_str = capability.as_version_str()
compute_str = f"has compute capability {version_str}"
raise ValueError(
"Bfloat16 is only supported on GPUs "
"with compute capability of at least 8.0. "
f"Your {gpu_name} GPU {compute_str}. "
"You can use float16 instead by explicitly setting the "
"`dtype` flag in CLI, for example: --dtype=half."
)
@classmethod
def support_hybrid_kv_cache(cls) -> bool:
return True
@classmethod
def support_static_graph_mode(cls) -> bool:
return True