ioana ghiban 15b1511a15
[GPU Backend] [Doc]: Remove duplicate statements on missing GPU wheels. (#29962)
Signed-off-by: Ioana Ghiban <ioana.ghiban@arm.com>
2025-12-03 12:56:47 +00:00

85 lines
3.1 KiB
Markdown

# --8<-- [start:installation]
vLLM initially supports basic model inference and serving on Intel GPU platform.
# --8<-- [end:installation]
# --8<-- [start:requirements]
- Supported Hardware: Intel Data Center GPU, Intel ARC GPU
- OneAPI requirements: oneAPI 2025.1
- Python: 3.12
!!! warning
The provided IPEX whl is Python3.12 specific so this version is a MUST.
# --8<-- [end:requirements]
# --8<-- [start:set-up-using-python]
There is no extra information on creating a new Python environment for this device.
# --8<-- [end:set-up-using-python]
# --8<-- [start:pre-built-wheels]
Currently, there are no pre-built XPU wheels.
# --8<-- [end:pre-built-wheels]
# --8<-- [start:build-wheel-from-source]
- First, install required [driver](https://dgpu-docs.intel.com/driver/installation.html#installing-gpu-drivers) and [Intel OneAPI](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) 2025.1 or later.
- Second, install Python packages for vLLM XPU backend building:
```bash
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install --upgrade pip
pip install -v -r requirements/xpu.txt
```
- Then, build and install vLLM XPU backend:
```bash
VLLM_TARGET_DEVICE=xpu python setup.py install
```
# --8<-- [end:build-wheel-from-source]
# --8<-- [start:pre-built-images]
Currently, we release prebuilt XPU images at docker [hub](https://hub.docker.com/r/intel/vllm/tags) based on vLLM released version. For more information, please refer release [note](https://github.com/intel/ai-containers/blob/main/vllm).
# --8<-- [end:pre-built-images]
# --8<-- [start:build-image-from-source]
```bash
docker build -f docker/Dockerfile.xpu -t vllm-xpu-env --shm-size=4g .
docker run -it \
--rm \
--network=host \
--device /dev/dri:/dev/dri \
-v /dev/dri/by-path:/dev/dri/by-path \
--ipc=host \
--privileged \
vllm-xpu-env
```
# --8<-- [end:build-image-from-source]
# --8<-- [start:supported-features]
XPU platform supports **tensor parallel** inference/serving and also supports **pipeline parallel** as a beta feature for online serving. For **pipeline parallel**, we support it on single node with mp as the backend. For example, a reference execution like following:
```bash
vllm serve facebook/opt-13b \
--dtype=bfloat16 \
--max_model_len=1024 \
--distributed-executor-backend=mp \
--pipeline-parallel-size=2 \
-tp=8
```
By default, a ray instance will be launched automatically if no existing one is detected in the system, with `num-gpus` equals to `parallel_config.world_size`. We recommend properly starting a ray cluster before execution, referring to the [examples/online_serving/run_cluster.sh](https://github.com/vllm-project/vllm/blob/main/examples/online_serving/run_cluster.sh) helper script.
# --8<-- [end:supported-features]
# --8<-- [start:distributed-backend]
XPU platform uses **torch-ccl** for torch<2.8 and **xccl** for torch>=2.8 as distributed backend, since torch 2.8 supports **xccl** as built-in backend for XPU.
# --8<-- [end:distributed-backend]