vllm/tests/kernels/test_top_k_per_row.py
Daniel Cámpora 184076c3fe
[DeepSeek v3.2] Make top-k work for any logit values. (#27568)
Signed-off-by: Daniel Campora <961215+dcampora@users.noreply.github.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-12-08 06:55:58 -08:00

258 lines
7.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import numpy as np
import pytest
import torch
from vllm.platforms import current_platform
# Test parameters
NUM_ROWS = [1, 32, 2050]
TOP_K_VALUES = [2048, 3000]
BATCH_SIZE = [1, 2, 2048]
NEXT_N = [1, 8]
DATA_GENERATION = ["random", "10LSBits"]
def create_random_logits(
row_starts: torch.Tensor,
row_ends: torch.Tensor,
dtype: torch.dtype,
seed: int,
data_generation: str,
) -> torch.Tensor:
"""Create random logits tensor for testing."""
torch.manual_seed(seed)
np.random.seed(seed)
# Generate logits with some structure to make testing more meaningful
if data_generation == "random":
logits = torch.randn(
row_starts.shape[0], max(row_ends), dtype=dtype, device="cuda"
)
elif data_generation == "10LSBits":
top_22_bits_mask = 0xFFFFFC00
last_10_bits_mask = 0x000003FF
fixed_top_22_bits = 0x3F900000
# Generate random bits for the last 10 bits
random_bottom_bits = torch.randint(
0,
2**10,
(row_starts.shape[0], max(row_ends)),
dtype=torch.int32,
device="cuda",
)
# Combine: fixed top 22 bits with random last 10 bits
logits_bits = (fixed_top_22_bits & top_22_bits_mask) | (
random_bottom_bits & last_10_bits_mask
)
logits = logits_bits.view(dtype)
for i, end in enumerate(row_ends):
logits[i, end:] = float("-inf")
return logits
def create_row_boundaries(
seq_len: int, vocab_size: int
) -> tuple[torch.Tensor, torch.Tensor]:
"""Create row start and end indices for testing."""
row_starts = torch.zeros(seq_len, dtype=torch.int32, device="cuda")
row_ends = torch.arange(1, seq_len + 1, device="cuda", dtype=torch.int32)
return row_starts, row_ends
def compare_top_k_results(
logits: torch.Tensor,
cuda_indices: torch.Tensor,
torch_indices: torch.Tensor,
row_starts: torch.Tensor,
row_ends: torch.Tensor,
top_k: int,
tolerance: float = 1e-5,
) -> bool:
"""
Compare results from CUDA top_k_per_row with torch.topk.
Both results should be sorted and contain the same top-k elements.
"""
num_rows = cuda_indices.shape[0]
for row_idx in range(num_rows):
# Get valid elements using row boundaries
row_start = row_starts[row_idx].item()
row_end = row_ends[row_idx].item()
row_length = row_end - row_start
num_valid = min(top_k, row_length)
cuda_row_indices = cuda_indices[row_idx][:num_valid].cpu()
torch_row_indices = torch_indices[row_idx][:num_valid].cpu()
# Compare the sets of indices first
cuda_set = set(cuda_row_indices.tolist())
torch_set = set(torch_row_indices.tolist())
if cuda_set == torch_set:
continue
# Any difference in elements, compare the values
logits_row = logits[row_idx]
cuda_row_values = [logits_row[i] for i in cuda_row_indices]
torch_row_values = [logits_row[i] for i in torch_row_indices]
cuda_only_values, torch_only_values = [], []
for idx in cuda_set - torch_set:
cuda_pos = (cuda_row_indices == idx).nonzero(as_tuple=True)[0]
cuda_only_values.append(cuda_row_values[cuda_pos[0]])
for idx in torch_set - cuda_set:
torch_pos = (torch_row_indices == idx).nonzero(as_tuple=True)[0]
torch_only_values.append(torch_row_values[torch_pos[0]])
if len(cuda_only_values) != len(torch_only_values):
return False
if not torch.allclose(
torch.tensor(cuda_only_values),
torch.tensor(torch_only_values),
rtol=tolerance,
atol=tolerance,
):
return False
return True
@pytest.mark.parametrize("num_rows", NUM_ROWS)
@pytest.mark.parametrize("top_k", TOP_K_VALUES)
@pytest.mark.skipif(not current_platform.is_cuda(), reason="This test requires CUDA")
@torch.inference_mode()
def test_top_k_per_row(
num_rows: int,
top_k: int,
) -> None:
"""
Test top_k_per_row.
"""
torch.set_default_device("cuda:0")
# Create test data
vocab_size = 20000
row_starts, row_ends = create_row_boundaries(num_rows, vocab_size)
logits = create_random_logits(row_starts, row_ends, torch.float32, 42, "random")
# Create output tensors
indices = torch.empty((num_rows, top_k), dtype=torch.int32, device="cuda")
# Run CUDA implementation
torch.ops._C.top_k_per_row_prefill(
logits,
row_starts,
row_ends,
indices,
num_rows,
logits.stride(0),
logits.stride(1),
top_k,
)
# Run reference implementation
torch_indices = logits.topk(min(top_k, max(row_ends)), dim=-1)[1]
mask_lo = torch_indices >= 0
mask_hi = (torch_indices - (row_ends - row_starts)[:, None]) < 0
mask = mask_lo & mask_hi
torch_indices = torch_indices.masked_fill(~mask, -1)
# Compare results
assert compare_top_k_results(
logits, indices, torch_indices, row_starts, row_ends, top_k
), "CUDA top_k_per_row_prefill results don't match torch.topk"
def _run_top_k_per_row_decode_test(
top_k: int,
batch_size: int,
next_n: int,
vocab_size: int,
data_generation: str,
) -> None:
"""
Helper function to run top_k_per_row_decode test with given parameters.
"""
torch.set_default_device("cuda:0")
# Create test data
num_rows = batch_size * next_n
seq_lens = torch.randint(
vocab_size, (batch_size,), dtype=torch.int32, device="cuda"
)
row_starts = torch.zeros(num_rows, dtype=torch.int32, device="cuda")
row_indices = torch.arange(num_rows, device="cuda") // next_n
next_n_offset = torch.arange(num_rows, device="cuda") % next_n
row_ends = seq_lens[row_indices] - next_n + next_n_offset + 1
logits = create_random_logits(
row_starts, row_ends, torch.float32, 42, data_generation
)
# Create output tensors
indices = torch.empty((num_rows, top_k), dtype=torch.int32, device="cuda")
# Run CUDA implementation
torch.ops._C.top_k_per_row_decode(
logits,
next_n,
seq_lens,
indices,
num_rows,
logits.stride(0),
logits.stride(1),
top_k,
)
torch.cuda.synchronize()
# Run reference implementation
torch_indices = logits.topk(min(top_k, max(row_ends)), dim=-1)[1]
mask_lo = torch_indices >= 0
mask_hi = (torch_indices - (row_ends - row_starts)[:, None]) < 0
mask = mask_lo & mask_hi
torch_indices = torch_indices.masked_fill(~mask, -1)
# Compare results
assert compare_top_k_results(
logits, indices, torch_indices, row_starts, row_ends, top_k
), "CUDA top_k_per_row_decode results don't match torch.topk"
@pytest.mark.parametrize("top_k", TOP_K_VALUES)
@pytest.mark.parametrize("batch_size", BATCH_SIZE)
@pytest.mark.parametrize("next_n", NEXT_N)
@pytest.mark.parametrize("data_generation", DATA_GENERATION)
@pytest.mark.skipif(not current_platform.is_cuda(), reason="This test requires CUDA")
@torch.inference_mode()
def test_top_k_per_row_decode(
top_k: int,
batch_size: int,
next_n: int,
data_generation: str,
) -> None:
"""
Test top_k_per_row with seq_lens tensor.
"""
vocab_size = 20000
_run_top_k_per_row_decode_test(
top_k, batch_size, next_n, vocab_size, data_generation
)
@pytest.mark.skipif(not current_platform.is_cuda(), reason="This test requires CUDA")
@torch.inference_mode()
def test_top_k_per_row_decode_large_vocab_size() -> None:
"""
Test top_k_per_row_decode with large vocabulary size.
"""
top_k = 2048
batch_size = 2
next_n = 2
vocab_size = 300000
data_generation = "random"
_run_top_k_per_row_decode_test(
top_k, batch_size, next_n, vocab_size, data_generation
)