Lei Wang 8d32dc603d
[Kernel] Support Microsoft Runtime Kernel Lib for our Low Precision Computation - BitBLAS (#6036)
Signed-off-by: xinyuxiao <xinyuxiao2024@gmail.com>
Co-authored-by: xinyuxiao <xinyuxiao2024@gmail.com>
2025-04-22 09:01:36 +01:00

41 lines
1.2 KiB
Markdown

# BitBLAS
vLLM now supports [BitBLAS](https://github.com/microsoft/BitBLAS) for more efficient and flexible model inference. Compared to other quantization frameworks, BitBLAS provides more precision combinations.
Below are the steps to utilize BitBLAS with vLLM.
```console
pip install bitblas>=0.1.0
```
vLLM reads the model's config file and supports pre-quantized checkpoints.
You can find pre-quantized models on:
- [Hugging Face (BitBLAS)](https://huggingface.co/models?other=bitblas)
- [Hugging Face (GPTQ)](https://huggingface.co/models?other=gptq)
Usually, these repositories have a `quantize_config.json` file that includes a `quantization_config` section.
## Read bitblas format checkpoint
```python
from vllm import LLM
import torch
# "hxbgsyxh/llama-13b-4bit-g-1-bitblas" is a pre-quantized checkpoint.
model_id = "hxbgsyxh/llama-13b-4bit-g-1-bitblas"
llm = LLM(model=model_id, dtype=torch.bfloat16, trust_remote_code=True, quantization="bitblas")
```
## Read gptq format checkpoint
```python
from vllm import LLM
import torch
# "hxbgsyxh/llama-13b-4bit-g-1" is a pre-quantized checkpoint.
model_id = "hxbgsyxh/llama-13b-4bit-g-1"
llm = LLM(model=model_id, dtype=torch.float16, trust_remote_code=True, quantization="bitblas", max_model_len=1024)
```