vllm/vllm/entrypoints/responses_utils.py
Andrew Xia 1a0b157a2e
[Frontend][responsesAPI][1/n] convert responses API tool input to chat completions tool format (#28231)
Signed-off-by: Andrew Xia <axia@fb.com>
Co-authored-by: Andrew Xia <axia@fb.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
2025-11-13 04:47:22 +00:00

78 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageToolCallParam,
ChatCompletionToolMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
Function as FunctionCallTool,
)
from openai.types.responses import ResponseFunctionToolCall
from openai.types.responses.tool import Tool
from vllm import envs
from vllm.entrypoints.openai.protocol import (
ChatCompletionMessageParam,
ResponseInputOutputItem,
)
def construct_chat_message_with_tool_call(
item: ResponseInputOutputItem,
) -> ChatCompletionMessageParam:
if isinstance(item, ResponseFunctionToolCall):
# Append the function call as a tool call.
return ChatCompletionAssistantMessageParam(
role="assistant",
tool_calls=[
ChatCompletionMessageToolCallParam(
id=item.call_id,
function=FunctionCallTool(
name=item.name,
arguments=item.arguments,
),
type="function",
)
],
)
elif item.get("type") == "function_call_output":
# Append the function call output as a tool message.
return ChatCompletionToolMessageParam(
role="tool",
content=item.get("output"),
tool_call_id=item.get("call_id"),
)
return item # type: ignore
def extract_tool_types(tools: list[Tool]) -> set[str]:
"""
Extracts the tool types from the given tools.
"""
tool_types: set[str] = set()
for tool in tools:
if tool.type == "mcp":
# Allow the MCP Tool type to enable built in tools if the
# server_label is allowlisted in
# envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS
if tool.server_label in envs.VLLM_GPT_OSS_SYSTEM_TOOL_MCP_LABELS:
tool_types.add(tool.server_label)
else:
tool_types.add(tool.type)
return tool_types
def convert_tool_responses_to_completions_format(tool: dict) -> dict:
"""
Convert a flat tool schema:
{"type": "function", "name": "...", "description": "...", "parameters": {...}}
into:
{"type": "function", "function": {...}}
"""
return {
"type": "function",
"function": tool,
}