Signed-off-by: Andrew Feldman <afeldman@redhat.com> Signed-off-by: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com> Co-authored-by: Joseph Marinier <Joseph.Marinier@gmail.com>
1.6 KiB
Custom Arguments
You can use vLLM custom arguments to pass in arguments which are not part of the vLLM SamplingParams and REST API specifications. Adding or removing a vLLM custom argument does not require recompiling vLLM, since the custom arguments are passed in as a dictionary.
Custom arguments can be useful if, for example, you want to use a custom logits processor without modifying the vLLM source code.
Offline Custom Arguments
Custom arguments passed to SamplingParams.extra_args as a dict will be visible to any code which has access to SamplingParams:
SamplingParams(extra_args={"your_custom_arg_name": 67})
This allows arguments which are not already part of SamplingParams to be passed into LLM as part of a request.
Online Custom Arguments
The vLLM REST API allows custom arguments to be passed to the vLLM server via vllm_xargs. The example below integrates custom arguments into a vLLM REST API request:
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-1.5B-Instruct",
...
"vllm_xargs": {"your_custom_arg": 67}
}'
Furthermore, OpenAI SDK users can access vllm_xargs via the extra_body argument:
batch = await client.completions.create(
model="Qwen/Qwen2.5-1.5B-Instruct",
...,
extra_body={
"vllm_xargs": {
"your_custom_arg": 67
}
}
)
!!! note
vllm_xargs is assigned to SamplingParams.extra_args under the hood, so code which uses SamplingParams.extra_args is compatible with both offline and online scenarios.