mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 18:25:01 +08:00
Signed-off-by: wang.yuqi <yuqi.wang@daocloud.io> Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
935 lines
32 KiB
Markdown
935 lines
32 KiB
Markdown
# OpenAI-Compatible Server
|
||
|
||
vLLM provides an HTTP server that implements OpenAI's [Completions API](https://platform.openai.com/docs/api-reference/completions), [Chat API](https://platform.openai.com/docs/api-reference/chat), and more! This functionality lets you serve models and interact with them using an HTTP client.
|
||
|
||
In your terminal, you can [install](../getting_started/installation/README.md) vLLM, then start the server with the [`vllm serve`](../configuration/serve_args.md) command. (You can also use our [Docker](../deployment/docker.md) image.)
|
||
|
||
```bash
|
||
vllm serve NousResearch/Meta-Llama-3-8B-Instruct \
|
||
--dtype auto \
|
||
--api-key token-abc123
|
||
```
|
||
|
||
To call the server, in your preferred text editor, create a script that uses an HTTP client. Include any messages that you want to send to the model. Then run that script. Below is an example script using the [official OpenAI Python client](https://github.com/openai/openai-python).
|
||
|
||
??? code
|
||
|
||
```python
|
||
from openai import OpenAI
|
||
client = OpenAI(
|
||
base_url="http://localhost:8000/v1",
|
||
api_key="token-abc123",
|
||
)
|
||
|
||
completion = client.chat.completions.create(
|
||
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
||
messages=[
|
||
{"role": "user", "content": "Hello!"},
|
||
],
|
||
)
|
||
|
||
print(completion.choices[0].message)
|
||
```
|
||
|
||
!!! tip
|
||
vLLM supports some parameters that are not supported by OpenAI, `top_k` for example.
|
||
You can pass these parameters to vLLM using the OpenAI client in the `extra_body` parameter of your requests, i.e. `extra_body={"top_k": 50}` for `top_k`.
|
||
|
||
!!! important
|
||
By default, the server applies `generation_config.json` from the Hugging Face model repository if it exists. This means the default values of certain sampling parameters can be overridden by those recommended by the model creator.
|
||
|
||
To disable this behavior, please pass `--generation-config vllm` when launching the server.
|
||
|
||
## Supported APIs
|
||
|
||
We currently support the following OpenAI APIs:
|
||
|
||
- [Completions API](#completions-api) (`/v1/completions`)
|
||
- Only applicable to [text generation models](../models/generative_models.md).
|
||
- *Note: `suffix` parameter is not supported.*
|
||
- [Chat Completions API](#chat-api) (`/v1/chat/completions`)
|
||
- Only applicable to [text generation models](../models/generative_models.md) with a [chat template](../serving/openai_compatible_server.md#chat-template).
|
||
- *Note: `user` parameter is ignored.*
|
||
- *Note:* Setting the `parallel_tool_calls` parameter to `false` ensures vLLM only returns zero or one tool call per request. Setting it to `true` (the default) allows returning more than one tool call per request. There is no guarantee more than one tool call will be returned if this is set to `true`, as that behavior is model dependent and not all models are designed to support parallel tool calls.
|
||
- [Embeddings API](#embeddings-api) (`/v1/embeddings`)
|
||
- Only applicable to [embedding models](../models/pooling_models.md).
|
||
- [Transcriptions API](#transcriptions-api) (`/v1/audio/transcriptions`)
|
||
- Only applicable to [Automatic Speech Recognition (ASR) models](../models/supported_models.md#transcription).
|
||
- [Translation API](#translations-api) (`/v1/audio/translations`)
|
||
- Only applicable to [Automatic Speech Recognition (ASR) models](../models/supported_models.md#transcription).
|
||
|
||
In addition, we have the following custom APIs:
|
||
|
||
- [Tokenizer API](#tokenizer-api) (`/tokenize`, `/detokenize`)
|
||
- Applicable to any model with a tokenizer.
|
||
- [Pooling API](#pooling-api) (`/pooling`)
|
||
- Applicable to all [pooling models](../models/pooling_models.md).
|
||
- [Classification API](#classification-api) (`/classify`)
|
||
- Only applicable to [classification models](../models/pooling_models.md).
|
||
- [Score API](#score-api) (`/score`)
|
||
- Applicable to [embedding models and cross-encoder models](../models/pooling_models.md).
|
||
- [Re-rank API](#re-rank-api) (`/rerank`, `/v1/rerank`, `/v2/rerank`)
|
||
- Implements [Jina AI's v1 re-rank API](https://jina.ai/reranker/)
|
||
- Also compatible with [Cohere's v1 & v2 re-rank APIs](https://docs.cohere.com/v2/reference/rerank)
|
||
- Jina and Cohere's APIs are very similar; Jina's includes extra information in the rerank endpoint's response.
|
||
- Only applicable to [cross-encoder models](../models/pooling_models.md).
|
||
|
||
## Chat Template
|
||
|
||
In order for the language model to support chat protocol, vLLM requires the model to include
|
||
a chat template in its tokenizer configuration. The chat template is a Jinja2 template that
|
||
specifies how roles, messages, and other chat-specific tokens are encoded in the input.
|
||
|
||
An example chat template for `NousResearch/Meta-Llama-3-8B-Instruct` can be found [here](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models)
|
||
|
||
Some models do not provide a chat template even though they are instruction/chat fine-tuned. For those models,
|
||
you can manually specify their chat template in the `--chat-template` parameter with the file path to the chat
|
||
template, or the template in string form. Without a chat template, the server will not be able to process chat
|
||
and all chat requests will error.
|
||
|
||
```bash
|
||
vllm serve <model> --chat-template ./path-to-chat-template.jinja
|
||
```
|
||
|
||
vLLM community provides a set of chat templates for popular models. You can find them under the [examples](../../examples) directory.
|
||
|
||
With the inclusion of multi-modal chat APIs, the OpenAI spec now accepts chat messages in a new format which specifies
|
||
both a `type` and a `text` field. An example is provided below:
|
||
|
||
```python
|
||
completion = client.chat.completions.create(
|
||
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "text", "text": "Classify this sentiment: vLLM is wonderful!"},
|
||
],
|
||
},
|
||
],
|
||
)
|
||
```
|
||
|
||
Most chat templates for LLMs expect the `content` field to be a string, but there are some newer models like
|
||
`meta-llama/Llama-Guard-3-1B` that expect the content to be formatted according to the OpenAI schema in the
|
||
request. vLLM provides best-effort support to detect this automatically, which is logged as a string like
|
||
*"Detected the chat template content format to be..."*, and internally converts incoming requests to match
|
||
the detected format, which can be one of:
|
||
|
||
- `"string"`: A string.
|
||
- Example: `"Hello world"`
|
||
- `"openai"`: A list of dictionaries, similar to OpenAI schema.
|
||
- Example: `[{"type": "text", "text": "Hello world!"}]`
|
||
|
||
If the result is not what you expect, you can set the `--chat-template-content-format` CLI argument
|
||
to override which format to use.
|
||
|
||
## Extra Parameters
|
||
|
||
vLLM supports a set of parameters that are not part of the OpenAI API.
|
||
In order to use them, you can pass them as extra parameters in the OpenAI client.
|
||
Or directly merge them into the JSON payload if you are using HTTP call directly.
|
||
|
||
```python
|
||
completion = client.chat.completions.create(
|
||
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
||
messages=[
|
||
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"},
|
||
],
|
||
extra_body={
|
||
"structured_outputs": {"choice": ["positive", "negative"]},
|
||
},
|
||
)
|
||
```
|
||
|
||
## Extra HTTP Headers
|
||
|
||
Only `X-Request-Id` HTTP request header is supported for now. It can be enabled
|
||
with `--enable-request-id-headers`.
|
||
|
||
??? code
|
||
|
||
```python
|
||
completion = client.chat.completions.create(
|
||
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
||
messages=[
|
||
{"role": "user", "content": "Classify this sentiment: vLLM is wonderful!"},
|
||
],
|
||
extra_headers={
|
||
"x-request-id": "sentiment-classification-00001",
|
||
},
|
||
)
|
||
print(completion._request_id)
|
||
|
||
completion = client.completions.create(
|
||
model="NousResearch/Meta-Llama-3-8B-Instruct",
|
||
prompt="A robot may not injure a human being",
|
||
extra_headers={
|
||
"x-request-id": "completion-test",
|
||
},
|
||
)
|
||
print(completion._request_id)
|
||
```
|
||
|
||
## API Reference
|
||
|
||
### Completions API
|
||
|
||
Our Completions API is compatible with [OpenAI's Completions API](https://platform.openai.com/docs/api-reference/completions);
|
||
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
|
||
|
||
Code example: [examples/online_serving/openai_completion_client.py](../../examples/online_serving/openai_completion_client.py)
|
||
|
||
#### Extra parameters
|
||
|
||
The following [sampling parameters](../api/README.md#inference-parameters) are supported.
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:completion-sampling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:completion-extra-params"
|
||
```
|
||
|
||
### Chat API
|
||
|
||
Our Chat API is compatible with [OpenAI's Chat Completions API](https://platform.openai.com/docs/api-reference/chat);
|
||
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
|
||
|
||
We support both [Vision](https://platform.openai.com/docs/guides/vision)- and
|
||
[Audio](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in)-related parameters;
|
||
see our [Multimodal Inputs](../features/multimodal_inputs.md) guide for more information.
|
||
|
||
- *Note: `image_url.detail` parameter is not supported.*
|
||
|
||
Code example: [examples/online_serving/openai_chat_completion_client.py](../../examples/online_serving/openai_chat_completion_client.py)
|
||
|
||
#### Extra parameters
|
||
|
||
The following [sampling parameters](../api/README.md#inference-parameters) are supported.
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:chat-completion-sampling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:chat-completion-extra-params"
|
||
```
|
||
|
||
### Embeddings API
|
||
|
||
Our Embeddings API is compatible with [OpenAI's Embeddings API](https://platform.openai.com/docs/api-reference/embeddings);
|
||
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
|
||
|
||
Code example: [examples/pooling/embed/openai_embedding_client.py](../../examples/pooling/embed/openai_embedding_client.py)
|
||
|
||
If the model has a [chat template](../serving/openai_compatible_server.md#chat-template), you can replace `inputs` with a list of `messages` (same schema as [Chat API](#chat-api))
|
||
which will be treated as a single prompt to the model. Here is a convenience function for calling the API while retaining OpenAI's type annotations:
|
||
|
||
??? code
|
||
|
||
```python
|
||
from openai import OpenAI
|
||
from openai._types import NOT_GIVEN, NotGiven
|
||
from openai.types.chat import ChatCompletionMessageParam
|
||
from openai.types.create_embedding_response import CreateEmbeddingResponse
|
||
|
||
def create_chat_embeddings(
|
||
client: OpenAI,
|
||
*,
|
||
messages: list[ChatCompletionMessageParam],
|
||
model: str,
|
||
encoding_format: Union[Literal["base64", "float"], NotGiven] = NOT_GIVEN,
|
||
) -> CreateEmbeddingResponse:
|
||
return client.post(
|
||
"/embeddings",
|
||
cast_to=CreateEmbeddingResponse,
|
||
body={"messages": messages, "model": model, "encoding_format": encoding_format},
|
||
)
|
||
```
|
||
|
||
#### Multi-modal inputs
|
||
|
||
You can pass multi-modal inputs to embedding models by defining a custom chat template for the server
|
||
and passing a list of `messages` in the request. Refer to the examples below for illustration.
|
||
|
||
=== "VLM2Vec"
|
||
|
||
To serve the model:
|
||
|
||
```bash
|
||
vllm serve TIGER-Lab/VLM2Vec-Full --runner pooling \
|
||
--trust-remote-code \
|
||
--max-model-len 4096 \
|
||
--chat-template examples/template_vlm2vec_phi3v.jinja
|
||
```
|
||
|
||
!!! important
|
||
Since VLM2Vec has the same model architecture as Phi-3.5-Vision, we have to explicitly pass `--runner pooling`
|
||
to run this model in embedding mode instead of text generation mode.
|
||
|
||
The custom chat template is completely different from the original one for this model,
|
||
and can be found here: [examples/template_vlm2vec_phi3v.jinja](../../examples/template_vlm2vec_phi3v.jinja)
|
||
|
||
Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level `requests` library:
|
||
|
||
??? code
|
||
|
||
```python
|
||
from openai import OpenAI
|
||
client = OpenAI(
|
||
base_url="http://localhost:8000/v1",
|
||
api_key="EMPTY",
|
||
)
|
||
image_url = "https://vllm-public-assets.s3.us-west-2.amazonaws.com/vision_model_images/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
||
|
||
response = create_chat_embeddings(
|
||
client,
|
||
model="TIGER-Lab/VLM2Vec-Full",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "image_url", "image_url": {"url": image_url}},
|
||
{"type": "text", "text": "Represent the given image."},
|
||
],
|
||
}
|
||
],
|
||
encoding_format="float",
|
||
)
|
||
|
||
print("Image embedding output:", response.data[0].embedding)
|
||
```
|
||
|
||
=== "DSE-Qwen2-MRL"
|
||
|
||
To serve the model:
|
||
|
||
```bash
|
||
vllm serve MrLight/dse-qwen2-2b-mrl-v1 --runner pooling \
|
||
--trust-remote-code \
|
||
--max-model-len 8192 \
|
||
--chat-template examples/template_dse_qwen2_vl.jinja
|
||
```
|
||
|
||
!!! important
|
||
Like with VLM2Vec, we have to explicitly pass `--runner pooling`.
|
||
|
||
Additionally, `MrLight/dse-qwen2-2b-mrl-v1` requires an EOS token for embeddings, which is handled
|
||
by a custom chat template: [examples/template_dse_qwen2_vl.jinja](../../examples/template_dse_qwen2_vl.jinja)
|
||
|
||
!!! important
|
||
`MrLight/dse-qwen2-2b-mrl-v1` requires a placeholder image of the minimum image size for text query embeddings. See the full code
|
||
example below for details.
|
||
|
||
Full example: [examples/pooling/embed/openai_chat_embedding_client_for_multimodal.py](../../examples/pooling/embed/openai_chat_embedding_client_for_multimodal.py)
|
||
|
||
#### Extra parameters
|
||
|
||
The following [pooling parameters][vllm.PoolingParams] are supported.
|
||
|
||
```python
|
||
--8<-- "vllm/pooling_params.py:common-pooling-params"
|
||
--8<-- "vllm/pooling_params.py:embedding-pooling-params"
|
||
```
|
||
|
||
The following extra parameters are supported by default:
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/pooling/embed/protocol.py:embedding-extra-params"
|
||
```
|
||
|
||
For chat-like input (i.e. if `messages` is passed), these extra parameters are supported instead:
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/pooling/embed/protocol.py:chat-embedding-extra-params"
|
||
```
|
||
|
||
### Transcriptions API
|
||
|
||
Our Transcriptions API is compatible with [OpenAI's Transcriptions API](https://platform.openai.com/docs/api-reference/audio/createTranscription);
|
||
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
|
||
|
||
!!! note
|
||
To use the Transcriptions API, please install with extra audio dependencies using `pip install vllm[audio]`.
|
||
|
||
Code example: [examples/online_serving/openai_transcription_client.py](../../examples/online_serving/openai_transcription_client.py)
|
||
|
||
#### API Enforced Limits
|
||
|
||
Set the maximum audio file size (in MB) that VLLM will accept, via the
|
||
`VLLM_MAX_AUDIO_CLIP_FILESIZE_MB` environment variable. Default is 25 MB.
|
||
|
||
#### Uploading Audio Files
|
||
|
||
The Transcriptions API supports uploading audio files in various formats including FLAC, MP3, MP4, MPEG, MPGA, M4A, OGG, WAV, and WEBM.
|
||
|
||
**Using OpenAI Python Client:**
|
||
|
||
??? code
|
||
|
||
```python
|
||
from openai import OpenAI
|
||
|
||
client = OpenAI(
|
||
base_url="http://localhost:8000/v1",
|
||
api_key="token-abc123",
|
||
)
|
||
|
||
# Upload audio file from disk
|
||
with open("audio.mp3", "rb") as audio_file:
|
||
transcription = client.audio.transcriptions.create(
|
||
model="openai/whisper-large-v3-turbo",
|
||
file=audio_file,
|
||
language="en",
|
||
response_format="verbose_json",
|
||
)
|
||
|
||
print(transcription.text)
|
||
```
|
||
|
||
**Using curl with multipart/form-data:**
|
||
|
||
??? code
|
||
|
||
```bash
|
||
curl -X POST "http://localhost:8000/v1/audio/transcriptions" \
|
||
-H "Authorization: Bearer token-abc123" \
|
||
-F "file=@audio.mp3" \
|
||
-F "model=openai/whisper-large-v3-turbo" \
|
||
-F "language=en" \
|
||
-F "response_format=verbose_json"
|
||
```
|
||
|
||
**Supported Parameters:**
|
||
|
||
- `file`: The audio file to transcribe (required)
|
||
- `model`: The model to use for transcription (required)
|
||
- `language`: The language code (e.g., "en", "zh") (optional)
|
||
- `prompt`: Optional text to guide the transcription style (optional)
|
||
- `response_format`: Format of the response ("json", "text") (optional)
|
||
- `temperature`: Sampling temperature between 0 and 1 (optional)
|
||
|
||
For the complete list of supported parameters including sampling parameters and vLLM extensions, see the [protocol definitions](https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/openai/protocol.py#L2182).
|
||
|
||
**Response Format:**
|
||
|
||
For `verbose_json` response format:
|
||
|
||
??? code
|
||
|
||
```json
|
||
{
|
||
"text": "Hello, this is a transcription of the audio file.",
|
||
"language": "en",
|
||
"duration": 5.42,
|
||
"segments": [
|
||
{
|
||
"id": 0,
|
||
"seek": 0,
|
||
"start": 0.0,
|
||
"end": 2.5,
|
||
"text": "Hello, this is a transcription",
|
||
"tokens": [50364, 938, 428, 307, 275, 28347],
|
||
"temperature": 0.0,
|
||
"avg_logprob": -0.245,
|
||
"compression_ratio": 1.235,
|
||
"no_speech_prob": 0.012
|
||
}
|
||
]
|
||
}
|
||
```
|
||
Currently “verbose_json” response format doesn’t support avg_logprob, compression_ratio, no_speech_prob.
|
||
|
||
#### Extra Parameters
|
||
|
||
The following [sampling parameters](../api/README.md#inference-parameters) are supported.
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:transcription-sampling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
??? code
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:transcription-extra-params"
|
||
```
|
||
|
||
### Translations API
|
||
|
||
Our Translation API is compatible with [OpenAI's Translations API](https://platform.openai.com/docs/api-reference/audio/createTranslation);
|
||
you can use the [official OpenAI Python client](https://github.com/openai/openai-python) to interact with it.
|
||
Whisper models can translate audio from one of the 55 non-English supported languages into English.
|
||
Please mind that the popular `openai/whisper-large-v3-turbo` model does not support translating.
|
||
|
||
!!! note
|
||
To use the Translation API, please install with extra audio dependencies using `pip install vllm[audio]`.
|
||
|
||
Code example: [examples/online_serving/openai_translation_client.py](../../examples/online_serving/openai_translation_client.py)
|
||
|
||
#### Extra Parameters
|
||
|
||
The following [sampling parameters](../api/README.md#inference-parameters) are supported.
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:translation-sampling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/openai/protocol.py:translation-extra-params"
|
||
```
|
||
|
||
### Tokenizer API
|
||
|
||
Our Tokenizer API is a simple wrapper over [HuggingFace-style tokenizers](https://huggingface.co/docs/transformers/en/main_classes/tokenizer).
|
||
It consists of two endpoints:
|
||
|
||
- `/tokenize` corresponds to calling `tokenizer.encode()`.
|
||
- `/detokenize` corresponds to calling `tokenizer.decode()`.
|
||
|
||
### Pooling API
|
||
|
||
Our Pooling API encodes input prompts using a [pooling model](../models/pooling_models.md) and returns the corresponding hidden states.
|
||
|
||
The input format is the same as [Embeddings API](#embeddings-api), but the output data can contain an arbitrary nested list, not just a 1-D list of floats.
|
||
|
||
Code example: [examples/pooling/pooling/openai_pooling_client.py](../../examples/pooling/pooling/openai_pooling_client.py)
|
||
|
||
### Classification API
|
||
|
||
Our Classification API directly supports Hugging Face sequence-classification models such as [ai21labs/Jamba-tiny-reward-dev](https://huggingface.co/ai21labs/Jamba-tiny-reward-dev) and [jason9693/Qwen2.5-1.5B-apeach](https://huggingface.co/jason9693/Qwen2.5-1.5B-apeach).
|
||
|
||
We automatically wrap any other transformer via `as_seq_cls_model()`, which pools on the last token, attaches a `RowParallelLinear` head, and applies a softmax to produce per-class probabilities.
|
||
|
||
Code example: [examples/pooling/classify/openai_classification_client.py](../../examples/pooling/classify/openai_classification_client.py)
|
||
|
||
#### Example Requests
|
||
|
||
You can classify multiple texts by passing an array of strings:
|
||
|
||
```bash
|
||
curl -v "http://127.0.0.1:8000/classify" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"model": "jason9693/Qwen2.5-1.5B-apeach",
|
||
"input": [
|
||
"Loved the new café—coffee was great.",
|
||
"This update broke everything. Frustrating."
|
||
]
|
||
}'
|
||
```
|
||
|
||
??? console "Response"
|
||
|
||
```json
|
||
{
|
||
"id": "classify-7c87cac407b749a6935d8c7ce2a8fba2",
|
||
"object": "list",
|
||
"created": 1745383065,
|
||
"model": "jason9693/Qwen2.5-1.5B-apeach",
|
||
"data": [
|
||
{
|
||
"index": 0,
|
||
"label": "Default",
|
||
"probs": [
|
||
0.565970778465271,
|
||
0.4340292513370514
|
||
],
|
||
"num_classes": 2
|
||
},
|
||
{
|
||
"index": 1,
|
||
"label": "Spoiled",
|
||
"probs": [
|
||
0.26448777318000793,
|
||
0.7355121970176697
|
||
],
|
||
"num_classes": 2
|
||
}
|
||
],
|
||
"usage": {
|
||
"prompt_tokens": 20,
|
||
"total_tokens": 20,
|
||
"completion_tokens": 0,
|
||
"prompt_tokens_details": null
|
||
}
|
||
}
|
||
```
|
||
|
||
You can also pass a string directly to the `input` field:
|
||
|
||
```bash
|
||
curl -v "http://127.0.0.1:8000/classify" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"model": "jason9693/Qwen2.5-1.5B-apeach",
|
||
"input": "Loved the new café—coffee was great."
|
||
}'
|
||
```
|
||
|
||
??? console "Response"
|
||
|
||
```json
|
||
{
|
||
"id": "classify-9bf17f2847b046c7b2d5495f4b4f9682",
|
||
"object": "list",
|
||
"created": 1745383213,
|
||
"model": "jason9693/Qwen2.5-1.5B-apeach",
|
||
"data": [
|
||
{
|
||
"index": 0,
|
||
"label": "Default",
|
||
"probs": [
|
||
0.565970778465271,
|
||
0.4340292513370514
|
||
],
|
||
"num_classes": 2
|
||
}
|
||
],
|
||
"usage": {
|
||
"prompt_tokens": 10,
|
||
"total_tokens": 10,
|
||
"completion_tokens": 0,
|
||
"prompt_tokens_details": null
|
||
}
|
||
}
|
||
```
|
||
|
||
#### Extra parameters
|
||
|
||
The following [pooling parameters][vllm.PoolingParams] are supported.
|
||
|
||
```python
|
||
--8<-- "vllm/pooling_params.py:common-pooling-params"
|
||
--8<-- "vllm/pooling_params.py:classification-pooling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/pooling/classify/protocol.py:classification-extra-params"
|
||
```
|
||
|
||
### Score API
|
||
|
||
Our Score API can apply a cross-encoder model or an embedding model to predict scores for sentence or multimodal pairs. When using an embedding model the score corresponds to the cosine similarity between each embedding pair.
|
||
Usually, the score for a sentence pair refers to the similarity between two sentences, on a scale of 0 to 1.
|
||
|
||
You can find the documentation for cross encoder models at [sbert.net](https://www.sbert.net/docs/package_reference/cross_encoder/cross_encoder.html).
|
||
|
||
Code example: [examples/pooling/score/openai_cross_encoder_score.py](../../examples/pooling/score/openai_cross_encoder_score.py)
|
||
|
||
#### Single inference
|
||
|
||
You can pass a string to both `text_1` and `text_2`, forming a single sentence pair.
|
||
|
||
```bash
|
||
curl -X 'POST' \
|
||
'http://127.0.0.1:8000/score' \
|
||
-H 'accept: application/json' \
|
||
-H 'Content-Type: application/json' \
|
||
-d '{
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"encoding_format": "float",
|
||
"text_1": "What is the capital of France?",
|
||
"text_2": "The capital of France is Paris."
|
||
}'
|
||
```
|
||
|
||
??? console "Response"
|
||
|
||
```json
|
||
{
|
||
"id": "score-request-id",
|
||
"object": "list",
|
||
"created": 693447,
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"data": [
|
||
{
|
||
"index": 0,
|
||
"object": "score",
|
||
"score": 1
|
||
}
|
||
],
|
||
"usage": {}
|
||
}
|
||
```
|
||
|
||
#### Batch inference
|
||
|
||
You can pass a string to `text_1` and a list to `text_2`, forming multiple sentence pairs
|
||
where each pair is built from `text_1` and a string in `text_2`.
|
||
The total number of pairs is `len(text_2)`.
|
||
|
||
??? console "Request"
|
||
|
||
```bash
|
||
curl -X 'POST' \
|
||
'http://127.0.0.1:8000/score' \
|
||
-H 'accept: application/json' \
|
||
-H 'Content-Type: application/json' \
|
||
-d '{
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"text_1": "What is the capital of France?",
|
||
"text_2": [
|
||
"The capital of Brazil is Brasilia.",
|
||
"The capital of France is Paris."
|
||
]
|
||
}'
|
||
```
|
||
|
||
??? console "Response"
|
||
|
||
```json
|
||
{
|
||
"id": "score-request-id",
|
||
"object": "list",
|
||
"created": 693570,
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"data": [
|
||
{
|
||
"index": 0,
|
||
"object": "score",
|
||
"score": 0.001094818115234375
|
||
},
|
||
{
|
||
"index": 1,
|
||
"object": "score",
|
||
"score": 1
|
||
}
|
||
],
|
||
"usage": {}
|
||
}
|
||
```
|
||
|
||
You can pass a list to both `text_1` and `text_2`, forming multiple sentence pairs
|
||
where each pair is built from a string in `text_1` and the corresponding string in `text_2` (similar to `zip()`).
|
||
The total number of pairs is `len(text_2)`.
|
||
|
||
??? console "Request"
|
||
|
||
```bash
|
||
curl -X 'POST' \
|
||
'http://127.0.0.1:8000/score' \
|
||
-H 'accept: application/json' \
|
||
-H 'Content-Type: application/json' \
|
||
-d '{
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"encoding_format": "float",
|
||
"text_1": [
|
||
"What is the capital of Brazil?",
|
||
"What is the capital of France?"
|
||
],
|
||
"text_2": [
|
||
"The capital of Brazil is Brasilia.",
|
||
"The capital of France is Paris."
|
||
]
|
||
}'
|
||
```
|
||
|
||
??? console "Response"
|
||
|
||
```json
|
||
{
|
||
"id": "score-request-id",
|
||
"object": "list",
|
||
"created": 693447,
|
||
"model": "BAAI/bge-reranker-v2-m3",
|
||
"data": [
|
||
{
|
||
"index": 0,
|
||
"object": "score",
|
||
"score": 1
|
||
},
|
||
{
|
||
"index": 1,
|
||
"object": "score",
|
||
"score": 1
|
||
}
|
||
],
|
||
"usage": {}
|
||
}
|
||
```
|
||
|
||
#### Multi-modal inputs
|
||
|
||
You can pass multi-modal inputs to scoring models by passing `content` including a list of multi-modal input (image, etc.) in the request. Refer to the examples below for illustration.
|
||
|
||
=== "JinaVL-Reranker"
|
||
|
||
To serve the model:
|
||
|
||
```bash
|
||
vllm serve jinaai/jina-reranker-m0
|
||
```
|
||
|
||
Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level `requests` library:
|
||
|
||
??? Code
|
||
|
||
```python
|
||
import requests
|
||
|
||
response = requests.post(
|
||
"http://localhost:8000/v1/score",
|
||
json={
|
||
"model": "jinaai/jina-reranker-m0",
|
||
"text_1": "slm markdown",
|
||
"text_2": {
|
||
"content": [
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/handelsblatt-preview.png"
|
||
},
|
||
},
|
||
{
|
||
"type": "image_url",
|
||
"image_url": {
|
||
"url": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/paper-11.png"
|
||
},
|
||
},
|
||
],
|
||
},
|
||
},
|
||
)
|
||
response.raise_for_status()
|
||
response_json = response.json()
|
||
print("Scoring output:", response_json["data"][0]["score"])
|
||
print("Scoring output:", response_json["data"][1]["score"])
|
||
```
|
||
Full example: [examples/pooling/score/openai_cross_encoder_score_for_multimodal.py](../../examples/pooling/score/openai_cross_encoder_score_for_multimodal.py)
|
||
|
||
#### Extra parameters
|
||
|
||
The following [pooling parameters][vllm.PoolingParams] are supported.
|
||
|
||
```python
|
||
--8<-- "vllm/pooling_params.py:common-pooling-params"
|
||
--8<-- "vllm/pooling_params.py:classification-pooling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/pooling/score/protocol.py:score-extra-params"
|
||
```
|
||
|
||
### Re-rank API
|
||
|
||
Our Re-rank API can apply an embedding model or a cross-encoder model to predict relevant scores between a single query, and
|
||
each of a list of documents. Usually, the score for a sentence pair refers to the similarity between two sentences or multi-modal inputs (image, etc.), on a scale of 0 to 1.
|
||
|
||
You can find the documentation for cross encoder models at [sbert.net](https://www.sbert.net/docs/package_reference/cross_encoder/cross_encoder.html).
|
||
|
||
The rerank endpoints support popular re-rank models such as `BAAI/bge-reranker-base` and other models supporting the
|
||
`score` task. Additionally, `/rerank`, `/v1/rerank`, and `/v2/rerank`
|
||
endpoints are compatible with both [Jina AI's re-rank API interface](https://jina.ai/reranker/) and
|
||
[Cohere's re-rank API interface](https://docs.cohere.com/v2/reference/rerank) to ensure compatibility with
|
||
popular open-source tools.
|
||
|
||
Code example: [examples/pooling/score/jinaai_rerank_client.py](../../examples/pooling/score/jinaai_rerank_client.py)
|
||
|
||
#### Example Request
|
||
|
||
Note that the `top_n` request parameter is optional and will default to the length of the `documents` field.
|
||
Result documents will be sorted by relevance, and the `index` property can be used to determine original order.
|
||
|
||
??? console "Request"
|
||
|
||
```bash
|
||
curl -X 'POST' \
|
||
'http://127.0.0.1:8000/v1/rerank' \
|
||
-H 'accept: application/json' \
|
||
-H 'Content-Type: application/json' \
|
||
-d '{
|
||
"model": "BAAI/bge-reranker-base",
|
||
"query": "What is the capital of France?",
|
||
"documents": [
|
||
"The capital of Brazil is Brasilia.",
|
||
"The capital of France is Paris.",
|
||
"Horses and cows are both animals"
|
||
]
|
||
}'
|
||
```
|
||
|
||
??? console "Response"
|
||
|
||
```json
|
||
{
|
||
"id": "rerank-fae51b2b664d4ed38f5969b612edff77",
|
||
"model": "BAAI/bge-reranker-base",
|
||
"usage": {
|
||
"total_tokens": 56
|
||
},
|
||
"results": [
|
||
{
|
||
"index": 1,
|
||
"document": {
|
||
"text": "The capital of France is Paris."
|
||
},
|
||
"relevance_score": 0.99853515625
|
||
},
|
||
{
|
||
"index": 0,
|
||
"document": {
|
||
"text": "The capital of Brazil is Brasilia."
|
||
},
|
||
"relevance_score": 0.0005860328674316406
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
#### Extra parameters
|
||
|
||
The following [pooling parameters][vllm.PoolingParams] are supported.
|
||
|
||
```python
|
||
--8<-- "vllm/pooling_params.py:common-pooling-params"
|
||
--8<-- "vllm/pooling_params.py:classification-pooling-params"
|
||
```
|
||
|
||
The following extra parameters are supported:
|
||
|
||
```python
|
||
--8<-- "vllm/entrypoints/pooling/score/protocol.py:rerank-extra-params"
|
||
```
|
||
|
||
## Ray Serve LLM
|
||
|
||
Ray Serve LLM enables scalable, production-grade serving of the vLLM engine. It integrates tightly with vLLM and extends it with features such as auto-scaling, load balancing, and back-pressure.
|
||
|
||
Key capabilities:
|
||
|
||
- Exposes an OpenAI-compatible HTTP API as well as a Pythonic API.
|
||
- Scales from a single GPU to a multi-node cluster without code changes.
|
||
- Provides observability and autoscaling policies through Ray dashboards and metrics.
|
||
|
||
The following example shows how to deploy a large model like DeepSeek R1 with Ray Serve LLM: [examples/online_serving/ray_serve_deepseek.py](../../examples/online_serving/ray_serve_deepseek.py).
|
||
|
||
Learn more about Ray Serve LLM with the official [Ray Serve LLM documentation](https://docs.ray.io/en/latest/serve/llm/serving-llms.html).
|