mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 23:25:38 +08:00
Signed-off-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com> Signed-off-by: Jennifer Zhao <ai.jenniferzhao@gmail.com> Co-authored-by: Jennifer Zhao <7443418+JenZhao@users.noreply.github.com> Co-authored-by: Jennifer Zhao <JenZhao@users.noreply.github.com> Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
218 lines
6.8 KiB
Markdown
218 lines
6.8 KiB
Markdown
# Benchmarking vLLM
|
||
|
||
This README guides you through running benchmark tests with the extensive
|
||
datasets supported on vLLM. It’s a living document, updated as new features and datasets
|
||
become available.
|
||
|
||
## Dataset Overview
|
||
|
||
<table style="width:100%; border-collapse: collapse;">
|
||
<thead>
|
||
<tr>
|
||
<th style="width:15%; text-align: left;">Dataset</th>
|
||
<th style="width:10%; text-align: center;">Online</th>
|
||
<th style="width:10%; text-align: center;">Offline</th>
|
||
<th style="width:65%; text-align: left;">Data Path</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<td><strong>ShareGPT</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>BurstGPT</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Sonnet</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td>Local file: <code>benchmarks/sonnet.txt</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>Random</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>synthetic</code></td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>HuggingFace</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">🟡</td>
|
||
<td>Specify your dataset path on HuggingFace</td>
|
||
</tr>
|
||
<tr>
|
||
<td><strong>VisionArena</strong></td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td style="text-align: center;">✅</td>
|
||
<td><code>lmarena-ai/vision-arena-bench-v0.1</code> (a HuggingFace dataset)</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
|
||
✅: supported
|
||
|
||
🚧: to be supported
|
||
|
||
🟡: Partial support. Currently, HuggingFaceDataset only supports dataset formats
|
||
similar to `lmms-lab/LLaVA-OneVision-Data`. If you need support for other dataset
|
||
formats, please consider contributing.
|
||
|
||
**Note**: VisionArena’s `dataset-name` should be set to `hf`
|
||
|
||
---
|
||
## Example - Online Benchmark
|
||
|
||
First start serving your model
|
||
|
||
```bash
|
||
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
|
||
vllm serve ${MODEL_NAME} --disable-log-requests
|
||
```
|
||
|
||
Then run the benchmarking script
|
||
|
||
```bash
|
||
# download dataset
|
||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
|
||
NUM_PROMPTS=10
|
||
BACKEND="openai-chat"
|
||
DATASET_NAME="sharegpt"
|
||
DATASET_PATH="<your data path>/ShareGPT_V3_unfiltered_cleaned_split.json"
|
||
python3 vllm/benchmarks/benchmark_serving.py --backend ${BACKEND} --model ${MODEL_NAME} --endpoint /v1/chat/completions --dataset-name ${DATASET_NAME} --dataset-path ${DATASET_PATH} --num-prompts ${NUM_PROMPTS}
|
||
```
|
||
|
||
If successful, you will see the following output
|
||
|
||
```
|
||
============ Serving Benchmark Result ============
|
||
Successful requests: 10
|
||
Benchmark duration (s): 5.78
|
||
Total input tokens: 1369
|
||
Total generated tokens: 2212
|
||
Request throughput (req/s): 1.73
|
||
Output token throughput (tok/s): 382.89
|
||
Total Token throughput (tok/s): 619.85
|
||
---------------Time to First Token----------------
|
||
Mean TTFT (ms): 71.54
|
||
Median TTFT (ms): 73.88
|
||
P99 TTFT (ms): 79.49
|
||
-----Time per Output Token (excl. 1st token)------
|
||
Mean TPOT (ms): 7.91
|
||
Median TPOT (ms): 7.96
|
||
P99 TPOT (ms): 8.03
|
||
---------------Inter-token Latency----------------
|
||
Mean ITL (ms): 7.74
|
||
Median ITL (ms): 7.70
|
||
P99 ITL (ms): 8.39
|
||
==================================================
|
||
```
|
||
|
||
### VisionArena Benchmark for Vision Language Models
|
||
|
||
```bash
|
||
# need a model with vision capability here
|
||
vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||
```
|
||
|
||
```bash
|
||
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
|
||
NUM_PROMPTS=10
|
||
BACKEND="openai-chat"
|
||
DATASET_NAME="hf"
|
||
DATASET_PATH="lmarena-ai/vision-arena-bench-v0.1"
|
||
DATASET_SPLIT='train'
|
||
|
||
python3 vllm/benchmarks/benchmark_serving.py \
|
||
--backend "${BACKEND}" \
|
||
--model "${MODEL_NAME}" \
|
||
--endpoint "/v1/chat/completions" \
|
||
--dataset-name "${DATASET_NAME}" \
|
||
--dataset-path "${DATASET_PATH}" \
|
||
--hf-split "${DATASET_SPLIT}" \
|
||
--num-prompts "${NUM_PROMPTS}"
|
||
```
|
||
|
||
---
|
||
## Example - Offline Throughput Benchmark
|
||
|
||
```bash
|
||
MODEL_NAME="NousResearch/Hermes-3-Llama-3.1-8B"
|
||
NUM_PROMPTS=10
|
||
DATASET_NAME="sonnet"
|
||
DATASET_PATH="vllm/benchmarks/sonnet.txt"
|
||
|
||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||
--model "${MODEL_NAME}" \
|
||
--dataset-name "${DATASET_NAME}" \
|
||
--dataset-path "${DATASET_PATH}" \
|
||
--num-prompts "${NUM_PROMPTS}"
|
||
```
|
||
|
||
If successful, you will see the following output
|
||
|
||
```
|
||
Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
|
||
Total num prompt tokens: 5014
|
||
Total num output tokens: 1500
|
||
```
|
||
|
||
### VisionArena Benchmark for Vision Language Models
|
||
|
||
``` bash
|
||
MODEL_NAME="Qwen/Qwen2-VL-7B-Instruct"
|
||
NUM_PROMPTS=10
|
||
DATASET_NAME="hf"
|
||
DATASET_PATH="lmarena-ai/vision-arena-bench-v0.1"
|
||
DATASET_SPLIT="train"
|
||
|
||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||
--model "${MODEL_NAME}" \
|
||
--backend "vllm-chat" \
|
||
--dataset-name "${DATASET_NAME}" \
|
||
--dataset-path "${DATASET_PATH}" \
|
||
--num-prompts "${NUM_PROMPTS}" \
|
||
--hf-split "${DATASET_SPLIT}"
|
||
```
|
||
|
||
The `num prompt tokens` now includes image token counts
|
||
|
||
```
|
||
Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
|
||
Total num prompt tokens: 14527
|
||
Total num output tokens: 1280
|
||
```
|
||
|
||
### Benchmark with LoRA Adapters
|
||
|
||
``` bash
|
||
# download dataset
|
||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||
MODEL_NAME="meta-llama/Llama-2-7b-hf"
|
||
BACKEND="vllm"
|
||
DATASET_NAME="sharegpt"
|
||
DATASET_PATH="<your data path>/ShareGPT_V3_unfiltered_cleaned_split.json"
|
||
NUM_PROMPTS=10
|
||
MAX_LORAS=2
|
||
MAX_LORA_RANK=8
|
||
ENABLE_LORA="--enable-lora"
|
||
LORA_PATH="yard1/llama-2-7b-sql-lora-test"
|
||
|
||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||
--model "${MODEL_NAME}" \
|
||
--backend "${BACKEND}" \
|
||
--dataset_path "${DATASET_PATH}" \
|
||
--dataset_name "${DATASET_NAME}" \
|
||
--num-prompts "${NUM_PROMPTS}" \
|
||
--max-loras "${MAX_LORAS}" \
|
||
--max-lora-rank "${MAX_LORA_RANK}" \
|
||
${ENABLE_LORA} \
|
||
--lora-path "${LORA_PATH}"
|
||
```
|