Signed-off-by: jiang1.li <jiang1.li@intel.com> Signed-off-by: Li, Jiang <bigpyj64@gmail.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
6.8 KiB
--8<-- [start:installation]
vLLM supports basic model inferencing and serving on x86 CPU platform, with data types FP32, FP16 and BF16.
--8<-- [end:installation]
--8<-- [start:requirements]
- OS: Linux
- CPU flags:
avx512f(Recommended),avx512_bf16(Optional),avx512_vnni(Optional)
!!! tip
Use lscpu to check the CPU flags.
--8<-- [end:requirements]
--8<-- [start:set-up-using-python]
--8<-- [end:set-up-using-python]
--8<-- [start:pre-built-wheels]
Pre-built vLLM wheels for x86 with AVX512 are available since version 0.13.0. To install release wheels:
export VLLM_VERSION=$(curl -s https://api.github.com/repos/vllm-project/vllm/releases/latest | jq -r .tag_name | sed 's/^v//')
# use uv
uv pip install vllm --extra-index-url https://wheels.vllm.ai/${VLLM_VERSION}/cpu --index-strategy first-index --torch-backend cpu
??? console "pip"
bash # use pip pip install vllm==${VLLM_VERSION}+cpu --extra-index-url https://wheels.vllm.ai/${VLLM_VERSION}/cpu --extra-index-url https://download.pytorch.org/whl/cpu
!!! warning "set LD_PRELOAD"
Before use vLLM CPU installed via wheels, make sure TCMalloc and Intel OpenMP are installed and added to LD_PRELOAD:
```bash
# install TCMalloc, Intel OpenMP is installed with vLLM CPU
sudo apt-get install -y --no-install-recommends libtcmalloc-minimal4
# manually find the path
sudo find / -iname *libtcmalloc_minimal.so.4
sudo find / -iname *libiomp5.so
TC_PATH=...
IOMP_PATH=...
# add them to LD_PRELOAD
export LD_PRELOAD="$TC_PATH:$IOMP_PATH:$LD_PRELOAD"
```
Install the latest code
To install the wheel built from the latest main branch:
uv pip install vllm --extra-index-url https://wheels.vllm.ai/nightly/cpu --index-strategy first-index --torch-backend cpu
Install specific revisions
If you want to access the wheels for previous commits (e.g. to bisect the behavior change, performance regression), you can specify the commit hash in the URL:
export VLLM_COMMIT=730bd35378bf2a5b56b6d3a45be28b3092d26519 # use full commit hash from the main branch
uv pip install vllm --extra-index-url https://wheels.vllm.ai/${VLLM_COMMIT}/cpu --index-strategy first-index --torch-backend cpu
--8<-- [end:pre-built-wheels]
--8<-- [start:build-wheel-from-source]
Install recommended compiler. We recommend to use gcc/g++ >= 12.3.0 as the default compiler to avoid potential problems. For example, on Ubuntu 22.4, you can run:
sudo apt-get update -y
sudo apt-get install -y gcc-12 g++-12 libnuma-dev
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
--8<-- "docs/getting_started/installation/python_env_setup.inc.md"
Clone the vLLM project:
git clone https://github.com/vllm-project/vllm.git vllm_source
cd vllm_source
Install the required dependencies:
uv pip install -r requirements/cpu-build.txt --torch-backend cpu
uv pip install -r requirements/cpu.txt --torch-backend cpu
??? console "pip"
bash pip install --upgrade pip pip install -v -r requirements/cpu-build.txt --extra-index-url https://download.pytorch.org/whl/cpu pip install -v -r requirements/cpu.txt --extra-index-url https://download.pytorch.org/whl/cpu
Build and install vLLM:
VLLM_TARGET_DEVICE=cpu uv pip install . --no-build-isolation
If you want to develop vLLM, install it in editable mode instead.
VLLM_TARGET_DEVICE=cpu uv pip install -e . --no-build-isolation
Optionally, build a portable wheel which you can then install elsewhere:
VLLM_TARGET_DEVICE=cpu uv build --wheel
uv pip install dist/*.whl
??? console "pip"
bash VLLM_TARGET_DEVICE=cpu python -m build --wheel --no-isolation
```bash
pip install dist/*.whl
```
!!! warning "set LD_PRELOAD"
Before use vLLM CPU installed via wheels, make sure TCMalloc and Intel OpenMP are installed and added to LD_PRELOAD:
```bash
# install TCMalloc, Intel OpenMP is installed with vLLM CPU
sudo apt-get install -y --no-install-recommends libtcmalloc-minimal4
# manually find the path
sudo find / -iname *libtcmalloc_minimal.so.4
sudo find / -iname *libiomp5.so
TC_PATH=...
IOMP_PATH=...
# add them to LD_PRELOAD
export LD_PRELOAD="$TC_PATH:$IOMP_PATH:$LD_PRELOAD"
```
!!! example "Troubleshooting"
- NumPy ≥2.0 error: Downgrade using pip install "numpy<2.0".
- CMake picks up CUDA: Add CMAKE_DISABLE_FIND_PACKAGE_CUDA=ON to prevent CUDA detection during CPU builds, even if CUDA is installed.
- AMD requires at least 4th gen processors (Zen 4/Genoa) or higher to support AVX512 to run vLLM on CPU.
- If you receive an error such as: Could not find a version that satisfies the requirement torch==X.Y.Z+cpu+cpu, consider updating pyproject.toml to help pip resolve the dependency.
toml title="pyproject.toml" [build-system] requires = [ "cmake>=3.26.1", ... "torch==X.Y.Z+cpu" # <------- ]
--8<-- [end:build-wheel-from-source]
--8<-- [start:pre-built-images]
https://gallery.ecr.aws/q9t5s3a7/vllm-cpu-release-repo
!!! warning
If deploying the pre-built images on machines without avx512f, avx512_bf16, or avx512_vnni support, an Illegal instruction error may be raised. It is recommended to build images for these machines with the appropriate build arguments (e.g., --build-arg VLLM_CPU_DISABLE_AVX512=true, --build-arg VLLM_CPU_AVX512BF16=false, or --build-arg VLLM_CPU_AVX512VNNI=false) to disable unsupported features. Please note that without avx512f, AVX2 will be used and this version is not recommended because it only has basic feature support.
--8<-- [end:pre-built-images]
--8<-- [start:build-image-from-source]
docker build -f docker/Dockerfile.cpu \
--build-arg VLLM_CPU_AVX512BF16=false (default)|true \
--build-arg VLLM_CPU_AVX512VNNI=false (default)|true \
--build-arg VLLM_CPU_AMXBF16=false|true (default) \
--build-arg VLLM_CPU_DISABLE_AVX512=false (default)|true \
--tag vllm-cpu-env \
--target vllm-openai .
# Launching OpenAI server
docker run --rm \
--security-opt seccomp=unconfined \
--cap-add SYS_NICE \
--shm-size=4g \
-p 8000:8000 \
-e VLLM_CPU_KVCACHE_SPACE=<KV cache space> \
vllm-cpu-env \
meta-llama/Llama-3.2-1B-Instruct \
--dtype=bfloat16 \
other vLLM OpenAI server arguments