Li, Jiang 20852c8f4c
[CPU] Refactor CPU WNA16 (#28826)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-11-19 10:32:00 +08:00

626 lines
21 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
from safetensors.torch import _TYPES as _SAFETENSORS_TO_TORCH_DTYPE
from vllm._custom_ops import (
cpu_gemm_wna16,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (
LinearBase,
LinearMethodBase,
UnquantizedLinearMethod,
)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from vllm.model_executor.layers.quantization.utils.gptq_utils import (
get_linear_quant_method,
)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
marlin_repeat_scales_on_all_ranks,
)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
is_layer_skipped,
pack_cols,
unpack_cols,
)
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.utils import WeightsMapper
from vllm.model_executor.parameter import (
ChannelQuantScaleParameter,
GroupQuantScaleParameter,
PackedColumnParameter,
PackedvLLMParameter,
RowvLLMParameter,
)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.transformers_utils.config import get_safetensors_params_metadata
from vllm.utils.collection_utils import is_list_of
logger = init_logger(__name__)
class CPUGPTQConfig(QuantizationConfig):
"""Config class for CPU GPTQ quant"""
def __init__(
self,
weight_bits: int,
group_size: int,
desc_act: bool,
is_sym: bool,
lm_head_quantized: bool,
dynamic: dict[str, dict[str, int | bool]],
full_config: dict[str, Any],
modules_in_block_to_quantize: list[str] | None = None,
) -> None:
super().__init__()
if desc_act and group_size == -1:
# In this case, act_order == True is the same as act_order == False
# (since we have only one group per output channel)
desc_act = False
# GPTQModel use `dynamic` config property to allow per module
# quantization config so each module can be individually optimized.
# Format is dict[str, dict] where key is a regex string that can
# perform both positive ("+:" prefixed) or negative ("-:" prefixed)
# matching of a module.
# Default to positive match, override base quant config mode, if no
# prefix is used. Value is in dict format of field key and override
# value.
# Negative matching will skip quantization init for this module
# entirely:
# non-quantized inference. More details and quantization examples can be
# found at: https://github.com/ModelCloud/GPTQModel
# Example:
# # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9
# # last 1/4 of the layers 16-21 has 8bit and group_size 64
# dynamic = {
# #`.*\.` matches the layers_node prefix
# # positive match layer 10-15
# r"+:.*\.(?:1[0-5])\..*": {"bits": 8,},
# # positive match layer 16-21
# r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,},
# r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers
# }
assert weight_bits == 4
self.dynamic = dynamic
self.weight_bits = weight_bits
self.is_sym = is_sym
self.pack_factor = 32 // weight_bits # packed into int32
self.group_size = group_size
self.desc_act = desc_act
self.lm_head_quantized = lm_head_quantized
self.full_config = full_config
self.modules_in_block_to_quantize = modules_in_block_to_quantize or []
def __repr__(self) -> str:
return (
f"CPUWNA16Config("
f"group_size={self.group_size}, "
f"desc_act={self.desc_act}, "
f"lm_head_quantized={self.lm_head_quantized}, "
f"dynamic={self.dynamic}, "
f"modules_in_block_to_quantize={self.modules_in_block_to_quantize})"
)
@classmethod
def get_name(cls) -> QuantizationMethods:
return "cpu_gptq"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return -1
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "CPUGPTQConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
desc_act = cls.get_from_keys_or(config, ["desc_act"], default=False)
dynamic = cls.get_from_keys_or(config, ["dynamic"], default={})
group_size = cls.get_from_keys(config, ["group_size"])
is_sym = cls.get_from_keys(config, ["sym"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False)
modules_in_block_to_quantize = cls.get_from_keys_or(
config, ["modules_in_block_to_quantize"], default=None
)
return cls(
weight_bits,
group_size,
desc_act,
is_sym,
lm_head_quantized,
dynamic,
config,
modules_in_block_to_quantize,
)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant
) -> QuantizationMethods | None:
quant_method = hf_quant_cfg.get("quant_method", "").lower()
if current_platform.is_cpu() and (quant_method == "gptq"):
return cls.get_name()
return None
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
return get_linear_quant_method(self, layer, prefix, CPUGPTQLinearMethod) # type: ignore
def apply_vllm_mapper(self, hf_to_vllm_mapper):
if self.modules_in_block_to_quantize is not None:
self.modules_in_block_to_quantize = hf_to_vllm_mapper.apply_list(
self.modules_in_block_to_quantize
)
def maybe_update_config(self, model_name: str, revision: str | None = None):
if self.modules_in_block_to_quantize:
if is_list_of(self.modules_in_block_to_quantize, list):
# original modules_in_block_to_quantize: list[list[str]]
# flatten original modules_in_block_to_quantize
self.modules_in_block_to_quantize = [
item
for sublist in self.modules_in_block_to_quantize
for item in sublist
]
return
unquant_dtypes = [torch.float16, torch.bfloat16, torch.float32]
metadata = get_safetensors_params_metadata(model_name, revision=revision)
quant_layers: set[str] = {
param_name.rsplit(".", 1)[0]
for param_name, info in metadata.items()
if (dtype := info.get("dtype", None))
and _SAFETENSORS_TO_TORCH_DTYPE[dtype] not in unquant_dtypes
}
self.modules_in_block_to_quantize = list(quant_layers)
class CPUGPTQLinearMethod(LinearMethodBase):
"""Linear method for GPTQ on CPU.
Args:
quant_config: The CPUWNA16 quantization config.
"""
def __init__(self, quant_config: CPUGPTQConfig) -> None:
self.quant_config = quant_config
assert self.quant_config.is_sym, "GPTQ asym quant is not supported on CPU"
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
output_size_per_partition = sum(output_partition_sizes)
assert output_size_per_partition * self.quant_config.weight_bits % 32 == 0
assert output_size_per_partition % 32 == 0
assert input_size_per_partition % 32 == 0
is_row_parallel = input_size != input_size_per_partition
weight_loader = extra_weight_attrs.get("weight_loader")
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
# Determine sharding
if marlin_repeat_scales_on_all_ranks(
self.quant_config.desc_act, self.quant_config.group_size, is_row_parallel
):
# By setting scale_dim == None, weight_loader will
# repeat the scales on each rank in TP>1 case.
scales_and_zp_input_dim = None
scales_and_zp_size = input_size // group_size
else:
# By setting scale_dim == 0, weight_loader will
# shard the scales in TP>1 case.
scales_and_zp_input_dim = 0
scales_and_zp_size = input_size_per_partition // group_size
# Quantized weights
qweight = PackedvLLMParameter(
data=torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=0,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader,
)
# Activation order
g_idx = RowvLLMParameter(
data=torch.empty(
input_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
weight_loader=weight_loader,
)
set_weight_attrs(
g_idx,
{"ignore_warning": True},
)
qzeros_args = {
"data": torch.empty(
scales_and_zp_size,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
"weight_loader": weight_loader,
}
weight_scale_args = {
"data": torch.empty(
scales_and_zp_size,
output_size_per_partition,
dtype=params_dtype,
),
"weight_loader": weight_loader,
}
if scales_and_zp_input_dim is None:
scales = ChannelQuantScaleParameter(output_dim=1, **weight_scale_args)
qzeros = PackedColumnParameter(
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
**qzeros_args,
)
else:
scales = GroupQuantScaleParameter(
output_dim=1, input_dim=0, **weight_scale_args
)
qzeros = PackedvLLMParameter(
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
**qzeros_args,
)
layer.register_parameter("qweight", qweight)
layer.register_parameter("g_idx", g_idx)
layer.register_parameter("scales", scales)
layer.register_parameter("qzeros", qzeros)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
torch.set_printoptions(profile="full", linewidth=5000, sci_mode=False)
packed_weight = layer.qweight.data
bits = self.quant_config.weight_bits
pack_factor = int(self.quant_config.pack_factor)
p_w_k, p_w_n = packed_weight.size()
input_size = p_w_k * pack_factor
output_size = p_w_n
isa_hint = _get_isa_hint(layer.scales.dtype)
layer.isa_hint = isa_hint
layer.qzeros = None
if not self.quant_config.desc_act:
layer.g_idx = None
# convert input dim packed to output dim packed
weight = unpack_cols(packed_weight, bits, p_w_k, p_w_n * pack_factor).view(
p_w_k, p_w_n, pack_factor
)
weight = weight.permute(0, 2, 1).reshape(input_size, output_size).contiguous()
weight = pack_cols(weight, bits, input_size, output_size)
# make 16 output channel as a block and transpose to the make
# the block contigous
weight = (
weight.view(input_size, -1, 16 // pack_factor)
.permute(1, 0, 2)
.reshape(-1, input_size * 16 // pack_factor)
.contiguous()
)
layer.qweight.data = weight
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
x = cpu_gemm_wna16(
input=x,
q_weight=layer.qweight,
scales=layer.scales,
zeros=layer.qzeros,
g_idx=layer.g_idx,
bias=bias,
pack_factor=8,
isa_hint=layer.isa_hint,
)
return x
class CPUAWQConfig(QuantizationConfig):
"""Config class for CPU AWQ"""
def __init__(
self,
weight_bits: int,
group_size: int,
zero_point: bool,
lm_head_quantized: bool,
modules_to_not_convert: list[str] | None,
full_config: dict[str, Any],
) -> None:
super().__init__()
assert weight_bits == 4
self.pack_factor = 32 // weight_bits # packed into int32
self.group_size = group_size
self.zero_point = zero_point
self.lm_head_quantized = lm_head_quantized
self.weight_bits = weight_bits
self.modules_to_not_convert = modules_to_not_convert or []
self.full_config = full_config
def __repr__(self) -> str:
return (
f"AWQMarlinConfig("
f"group_size={self.group_size}, "
f"zero_point={self.zero_point}, "
f"lm_head_quantized={self.lm_head_quantized}, "
f"modules_to_not_convert={self.modules_to_not_convert})"
)
@classmethod
def get_name(cls) -> "QuantizationMethods":
return "cpu_awq"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return -1
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "CPUAWQConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
zero_point = cls.get_from_keys(config, ["zero_point"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False)
modules_to_not_convert = cls.get_from_keys_or(
config, ["modules_to_not_convert"], None
)
return cls(
weight_bits,
group_size,
zero_point,
lm_head_quantized,
modules_to_not_convert,
config,
)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant
) -> Optional["QuantizationMethods"]:
quant_method = hf_quant_cfg.get("quant_method", "").lower()
if current_platform.is_cpu() and (quant_method == "awq"):
return cls.get_name()
return None
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase) or (
isinstance(layer, ParallelLMHead) and self.lm_head_quantized
):
if is_layer_skipped(
prefix,
self.modules_to_not_convert,
self.packed_modules_mapping,
skip_with_substr=True,
):
return UnquantizedLinearMethod()
return CPUAWQLinearMethod(self)
return None
def apply_vllm_mapper(self, hf_to_vllm_mapper: "WeightsMapper"):
if self.modules_to_not_convert:
self.modules_to_not_convert = hf_to_vllm_mapper.apply_list(
self.modules_to_not_convert
)
def maybe_update_config(self, model_name: str, revision: str | None = None):
if self.modules_to_not_convert:
return
unquant_dtypes = [torch.float16, torch.bfloat16, torch.float32]
metadata = get_safetensors_params_metadata(model_name, revision=revision)
layers = {param_name.rsplit(".", 1)[0] for param_name in metadata}
quant_layers: set[str] = {
param_name.rsplit(".", 1)[0]
for param_name, info in metadata.items()
if (dtype := info.get("dtype", None))
and _SAFETENSORS_TO_TORCH_DTYPE[dtype] not in unquant_dtypes
}
self.modules_to_not_convert = list(layers - quant_layers)
class CPUAWQLinearMethod(LinearMethodBase):
"""Linear method for CPU AWQ.
Args:
quant_config: The CPU AWQ quantization config.
"""
def __init__(self, quant_config: CPUAWQConfig) -> None:
self.quant_config = quant_config
assert self.quant_config.zero_point
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
del output_size
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
qweight = PackedvLLMParameter(
data=torch.empty(
input_size_per_partition,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader,
)
num_groups = input_size_per_partition // group_size
qzeros = PackedvLLMParameter(
data=torch.empty(
num_groups,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader,
)
scales = GroupQuantScaleParameter(
data=torch.empty(
num_groups,
output_size_per_partition,
dtype=params_dtype,
),
input_dim=0,
output_dim=1,
weight_loader=weight_loader,
)
layer.register_parameter("qweight", qweight)
layer.register_parameter("qzeros", qzeros)
layer.register_parameter("scales", scales)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
torch.set_printoptions(profile="full", linewidth=5000, sci_mode=False)
packed_weight = layer.qweight.data
packed_zeros = layer.qzeros.data
group_num = packed_zeros.size(0)
bits = self.quant_config.weight_bits
pack_factor = int(self.quant_config.pack_factor)
input_size, packed_output_size = packed_weight.size()
output_size = packed_output_size * pack_factor
isa_hint = _get_isa_hint(layer.scales.dtype)
layer.isa_hint = isa_hint
interleave_map = (0, 4, 1, 5, 2, 6, 3, 7)
weight = unpack_cols(
packed_weight,
bits,
input_size,
output_size,
)
zeros = unpack_cols(
packed_zeros,
bits,
group_num,
output_size,
)
weight = (
weight.view(input_size, -1, pack_factor)[:, :, interleave_map]
.reshape(input_size, output_size)
.contiguous()
)
zeros = (
zeros.view(group_num, -1, pack_factor)[:, :, interleave_map]
.reshape(group_num, output_size)
.contiguous()
)
zeros = pack_cols(zeros, bits, group_num, output_size).contiguous()
# make 16 output channel as a block and transpose to
# the make the block contigous
weight = pack_cols(weight, bits, input_size, output_size)
weight = (
weight.view(input_size, -1, 16 // pack_factor)
.permute(1, 0, 2)
.reshape(-1, input_size * 16 // pack_factor)
.contiguous()
)
layer.qweight.data = weight
layer.qzeros.data = zeros
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: torch.Tensor | None = None,
) -> torch.Tensor:
x = cpu_gemm_wna16(
input=x,
q_weight=layer.qweight,
scales=layer.scales,
zeros=layer.qzeros,
g_idx=None,
bias=bias,
pack_factor=8,
isa_hint=layer.isa_hint,
)
return x
def _get_isa_hint(dtype: torch.dtype) -> str:
supports_amx = torch._C._cpu._is_amx_tile_supported()
if supports_amx and dtype in (torch.bfloat16,):
return "amx"
else:
return "vec"