vllm/vllm/v1/attention/backends/mla/rocm_aiter_mla.py
Lucas Wilkinson e8697faf03
[V0 deprecation] Remove no longer used get_metadata_cls (#28370)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-11-10 14:32:09 +08:00

300 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import ClassVar
import torch
import vllm.envs as envs
from vllm.attention.backends.abstract import AttentionLayer
from vllm.attention.ops.rocm_aiter_mla import aiter_mla_decode_fwd
from vllm.config import VllmConfig
from vllm.utils.math_utils import cdiv
from vllm.v1.attention.backends.mla.common import (
MLACommonBackend,
MLACommonDecodeMetadata,
MLACommonImpl,
MLACommonMetadata,
MLACommonMetadataBuilder,
)
from vllm.v1.attention.backends.utils import AttentionCGSupport
from vllm.v1.kv_cache_interface import AttentionSpec
def is_aiter_mla_enabled() -> bool:
return envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_MLA
class AiterMLABackend(MLACommonBackend):
@staticmethod
def get_name() -> str:
return "ROCM_AITER_MLA"
@staticmethod
def get_impl_cls() -> type["AiterMLAImpl"]:
return AiterMLAImpl
@staticmethod
def get_builder_cls() -> type["AiterMLAMetadataBuilder"]:
return AiterMLAMetadataBuilder
@dataclass
class AiterMLADecodeMetadata(MLACommonDecodeMetadata):
# The indptr of the paged kv cache, shape: [batch_size + 1]
paged_kv_indptr: torch.Tensor | None = None
# The page indices of the paged kv cache
paged_kv_indices: torch.Tensor | None = None
# The number of entries in the last page of each request in
# the paged kv cache, shape: [batch_size]
paged_kv_last_page_len: torch.Tensor | None = None
# The query indptr, shape : [num_decode + 1]
qo_indptr: torch.Tensor | None = None
class AiterMLAMetadata(MLACommonMetadata[AiterMLADecodeMetadata]):
pass
class AiterMLAMetadataBuilder(MLACommonMetadataBuilder[AiterMLAMetadata]):
# TODO(luka, lucas): audit this as part of:
# https://github.com/vllm-project/vllm/issues/22945
cudagraph_support: ClassVar[AttentionCGSupport] = (
AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE
)
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
super().__init__(
kv_cache_spec, layer_names, vllm_config, device, AiterMLAMetadata
)
self.compilation_config = vllm_config.compilation_config
max_num_pages_per_req = cdiv(
vllm_config.model_config.max_model_len, self.kv_cache_spec.block_size
)
max_num_reqs = vllm_config.scheduler_config.max_num_seqs
max_num_pages = max_num_reqs * max_num_pages_per_req
# Preparing persistent buffers
# TODO: we can disambiguate between decode and mixed-prefill decode here
# so we can only use the persistent buffer if a cudagraph is actually
# being used.
if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
self.block_table_remapping = torch.zeros(
[max_num_reqs, max_num_pages_per_req * self.kv_cache_spec.block_size],
dtype=torch.int32,
device=device,
)
self.paged_kv_indptr = torch.zeros(
max_num_reqs + 1, dtype=torch.int32, device=device
)
self.paged_kv_indices = torch.zeros(
max_num_pages, dtype=torch.int32, device=device
)
self.paged_kv_last_page_len = torch.zeros(
max_num_reqs, dtype=torch.int32, device=device
)
self.qo_indptr = torch.arange(
0, max_num_reqs + 1, dtype=torch.int32, device=device
)
def _build_decode(
self,
block_table_tensor: torch.Tensor,
seq_lens_cpu: torch.Tensor,
seq_lens_device: torch.Tensor,
query_start_loc_cpu: torch.Tensor,
query_start_loc_device: torch.Tensor,
num_decode_tokens: int,
dcp_tot_seq_lens_device: torch.Tensor | None,
) -> AiterMLADecodeMetadata:
page_size = self.kv_cache_spec.block_size
device = self.device
num_reqs = seq_lens_device.size(0)
bs, _ = block_table_tensor.shape
block_table_tensor = (
block_table_tensor.unsqueeze(-1).expand(-1, -1, page_size) * page_size
)
block_table_tensor = (
block_table_tensor
+ torch.arange(
0,
page_size,
device=block_table_tensor.device,
dtype=block_table_tensor.dtype,
)[None, None, :]
)
block_table_tensor = block_table_tensor.view(bs, -1)
# after remapping, we assume the block size already equals to 1
max_blk_size_per_req = block_table_tensor.shape[-1]
mask = torch.arange(
block_table_tensor.size(1), dtype=block_table_tensor.dtype, device=device
).unsqueeze(0) < seq_lens_device.unsqueeze(1)
paged_kv_indices = block_table_tensor[mask]
paged_kv_last_page_len = seq_lens_device % page_size
paged_kv_last_page_len = torch.where(
paged_kv_last_page_len == 0, page_size, paged_kv_last_page_len
)
paged_kv_indptr = torch.cat(
[
torch.zeros(1, dtype=seq_lens_device.dtype, device=device),
seq_lens_device.cumsum(dim=0, dtype=torch.int32),
]
)
if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
num_actual_pages = paged_kv_indices.size(0)
self.block_table_remapping[:num_reqs, :max_blk_size_per_req].copy_(
block_table_tensor, non_blocking=True
)
block_table_tensor = self.block_table_remapping[
:num_reqs, :max_blk_size_per_req
]
self.paged_kv_indices[:num_actual_pages].copy_(
paged_kv_indices, non_blocking=True
)
self.paged_kv_indices[num_actual_pages:].fill_(-1)
paged_kv_indices = self.paged_kv_indices[:num_actual_pages]
self.paged_kv_indptr[: 1 + num_reqs].copy_(
paged_kv_indptr, non_blocking=True
)
self.paged_kv_indptr[1 + num_reqs :].fill_(paged_kv_indptr[-1])
paged_kv_indptr = self.paged_kv_indptr[: 1 + num_reqs]
self.paged_kv_last_page_len[:num_reqs].copy_(
paged_kv_last_page_len, non_blocking=True
)
self.paged_kv_last_page_len[num_reqs:].fill_(1)
paged_kv_last_page_len = self.paged_kv_last_page_len[:num_reqs]
qo_indptr = self.qo_indptr[: 1 + num_reqs]
else:
qo_indptr = torch.arange(
0, num_reqs + 1, step=1, dtype=torch.int32, device=device
)
attn_metadata = AiterMLADecodeMetadata(
block_table=block_table_tensor,
seq_lens=seq_lens_device,
paged_kv_indptr=paged_kv_indptr,
paged_kv_indices=paged_kv_indices,
paged_kv_last_page_len=paged_kv_last_page_len,
qo_indptr=qo_indptr,
dcp_tot_seq_lens=dcp_tot_seq_lens_device,
)
return attn_metadata
class AiterMLAImpl(MLACommonImpl[AiterMLAMetadata]):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: list[float] | None,
sliding_window: int | None,
kv_cache_dtype: str,
logits_soft_cap: float | None,
attn_type: str,
kv_sharing_target_layer_name: str | None,
# MLA Specific Arguments
**mla_args,
) -> None:
super().__init__(
num_heads,
head_size,
scale,
num_kv_heads,
alibi_slopes,
sliding_window,
kv_cache_dtype,
logits_soft_cap,
attn_type,
kv_sharing_target_layer_name,
**mla_args,
)
assert num_heads == 16 or num_heads == 128, (
f"Aiter MLA only supports 16 or 128 number of heads.\n"
f"Provided {num_heads} number of heads.\n"
"Try adjusting tensor_parallel_size value."
)
unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
if any(unsupported_features):
raise NotImplementedError(
"Aiter MLA does not support one of the following: "
"alibi_slopes, sliding_window, logits_soft_cap"
)
from aiter import flash_attn_varlen_func
self.flash_attn_varlen_func = flash_attn_varlen_func
def _flash_attn_varlen_diff_headdims(
self, q, k, v, return_softmax_lse=False, softmax_scale=None, **kwargs
):
output = self.flash_attn_varlen_func(
q=q,
k=k,
v=v,
softmax_scale=softmax_scale,
return_lse=return_softmax_lse,
**kwargs,
)
return output
def _forward_decode(
self,
q: torch.Tensor | tuple[torch.Tensor, torch.Tensor],
kv_c_and_k_pe_cache: torch.Tensor,
attn_metadata: AiterMLAMetadata,
layer: AttentionLayer,
) -> tuple[torch.Tensor, torch.Tensor | None]:
assert kv_c_and_k_pe_cache.numel() > 0
assert attn_metadata.decode is not None
if type(q) is tuple:
q = torch.cat(q, dim=-1)
assert isinstance(q, torch.Tensor)
B = q.shape[0]
o = torch.zeros(
B, self.num_heads, self.kv_lora_rank, dtype=q.dtype, device=q.device
)
kv_buffer = kv_c_and_k_pe_cache.unsqueeze(2)
# max_seqlen_qo must be 1 except for MTP
# TODO: Find the best value for MTP
max_seqlen_qo = 1
aiter_mla_decode_fwd(
q,
kv_buffer,
o,
self.scale,
attn_metadata.decode.qo_indptr,
max_seqlen_qo,
attn_metadata.decode.paged_kv_indptr,
attn_metadata.decode.paged_kv_indices,
attn_metadata.decode.paged_kv_last_page_len,
)
return o, None