91 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.multimodal import MULTIMODAL_REGISTRY
from ....conftest import ImageTestAssets
from ...utils import build_model_context
@pytest.mark.parametrize("model_id", ["Qwen/Qwen2-VL-2B-Instruct"])
@pytest.mark.parametrize(
("mm_processor_kwargs", "expected_toks_per_img", "expected_pixels_shape"),
[
({}, 1426, (5704, 1176)),
({"min_pixels": 64**2, "max_pixels": 512**2}, 330, (1320, 1176)),
],
)
@pytest.mark.parametrize("num_imgs", [1, 2])
@pytest.mark.parametrize("kwargs_on_init", [True, False])
def test_processor_override(
image_assets: ImageTestAssets,
model_id: str,
mm_processor_kwargs: dict[str, object],
expected_toks_per_img: int,
expected_pixels_shape: tuple[int, int],
num_imgs: int,
kwargs_on_init: bool,
):
"""Ensure Qwen2VLMultiModalProcessor handles min/max pixels properly."""
ctx = build_model_context(
model_id,
mm_processor_kwargs=mm_processor_kwargs if kwargs_on_init else None,
limit_mm_per_prompt={"image": num_imgs},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
tokenizer = processor.info.get_tokenizer()
hf_processor_mm_kwargs = {} if kwargs_on_init else mm_processor_kwargs
# Build the image str / prompt based on the number of images we pass
prompt = "<|vision_start|><|image_pad|><|vision_end|>" * num_imgs
mm_data = {"image": [image_assets[0].pil_image] * num_imgs}
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
# Ensure we have the right number of placeholders per num_crops size
hf_processor = processor.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token_id = tokenizer.convert_tokens_to_ids(hf_processor.image_token)
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
pixel_shape = processed_inputs["mm_kwargs"].get_data()["pixel_values"].shape
assert img_tok_count == expected_toks_per_img * num_imgs
assert pixel_shape[0] == expected_pixels_shape[0] * num_imgs
assert pixel_shape[1] == expected_pixels_shape[1]
@pytest.mark.parametrize("model_id", ["Qwen/Qwen2-VL-2B-Instruct"])
@pytest.mark.parametrize("max_pixels", [1280 * 28 * 28, 1283 * 28 * 28])
def test_get_image_size_with_most_features(
image_assets: ImageTestAssets,
model_id: str,
max_pixels: int,
):
ctx = build_model_context(
model_id,
mm_processor_kwargs={"max_pixels": max_pixels},
limit_mm_per_prompt={"image": 1},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
hf_processor_mm_kwargs: dict[str, object] = {}
hf_processor = processor.info.get_hf_processor(**hf_processor_mm_kwargs)
merge_size = processor.info.get_hf_config().vision_config.spatial_merge_size
max_image_size = processor.info.get_image_size_with_most_features()
max_tokens = processor.info.get_num_image_tokens(
image_width=max_image_size.width,
image_height=max_image_size.height,
image_processor=hf_processor.image_processor,
)
prompt = "<|vision_start|><|image_pad|><|vision_end|>"
for asset in image_assets:
mm_data = {"image": [asset.pil_image]}
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
grid_thw = processed_inputs["mm_kwargs"].get_data()["image_grid_thw"].tolist()
t, h, w = grid_thw[0]
tokens = (t * h * w) // (merge_size**2)
assert tokens < max_tokens